Vol. 19
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-02-16
Effects of Geometry on Amplification Property of Erbium Doped Holey Fiber Amplifiers Using Scalar Effective Index Method
By
Progress In Electromagnetics Research B, Vol. 19, 385-403, 2010
Abstract
Holey fibers (HF) with their peculiar properties have been used in fabrication of Erbium doped holey fiber amplifiers (EDHFA) for third optical communication window. In this paper, by using scalar effective index method, the analyses are presented to investigate the effects of HF geometrical parameters on the gain performance of the EDHFAs. The hierarchical variations of the parameters, including the air-hole sizes (AHS), propagating modes of the core and cladding, mode field diameter of the signal and pump, would cause alterations in the maximum gain and the optimum lengths of the EDHFAs. By determining the normalized frequency of the HF in wide range variations of the air-hole diameter, air-hole spacing, and air-filling factor (AFF), the single-mode regions for signal and pump wavelengths are obtained, where the maximum gain and the optimum lengths are evaluated. In addition, the influence of pump power and the dopant concentration in terms of the AFF are investigated. It is shown that by using suitable AHS and AFF, one can obtain a higher gain for a shorter optimum length in the EDHFAs. The obtained results can be a useful tool for design of HF-based optical amplifiers with lesser effects of amplified spontaneous emission and nonlinearities because of shorter optimized length.
Citation
Maryam Karimi Faramarz E. Seraji , "Effects of Geometry on Amplification Property of Erbium Doped Holey Fiber Amplifiers Using Scalar Effective Index Method," Progress In Electromagnetics Research B, Vol. 19, 385-403, 2010.
doi:10.2528/PIERB09122201
http://www.jpier.org/PIERB/pier.php?paper=09122201
References

1. Russell, P., "Photonic crystal fibers," Science, Vol. 299, 358-362, 2003.
doi:10.1126/science.1079280

2. Midrio, M., M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: An analytical vectorial solution," IEEE J. Ligthwave Technol., Vol. 18, 1031-1037, 2000.
doi:10.1109/50.850750

3. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, London, 2003.

4. Peucheret, C., B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen, "40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre," Electron. Lett., Vol. 39, No. 12, 919-921, 2003.
doi:10.1049/el:20030585

5. Zsigri, B., C. Peucheret, M. D. Nielsen, and P. Jeppesen, "Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fibre," Electron. Lett., Vol. 39, No. 10, 796-798, 2003.
doi:10.1049/el:20030518

6. Benabid, F., J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-fied hollow-core photonic crystal fiber," Science, Vol. 298, No. 5592, 399-402, 2002.
doi:10.1126/science.1076408

7. Monro, T. M., W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. Technol., Vol. 12, 854-858, 2001.
doi:10.1088/0957-0233/12/7/318

8. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, A. TÄunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-823, 2003.
doi:10.1364/OE.11.000818

9. Hansen, K. P., "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express, Vol. 11, 1503-1509, 2003.

10. Diddams, S. A., D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett., Vol. 84, 5102-5105, 2000.
doi:10.1103/PhysRevLett.84.5102

11. Park, K. N., T. Erdogan, and K. S. Lee, "Cladding mode coupling in long-period gratings formed in photonic crystal fibers," Opt. Commun., Vol. 266, 541-545, 2006.
doi:10.1016/j.optcom.2006.05.056

12. Shirakawa, A., J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, "Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm," Opt. Express, Vol. 13, 1221-1227, 2005.
doi:10.1364/OPEX.13.001221

13. Genty, G., M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in micro structured fibers," Opt. Express, Vol. 10, 1083-1098, 2002.

14. Sharping, J. E., M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett, Vol. 27, 1675-1677, 2002.
doi:10.1364/OL.27.001675

15. Nielsen, M. D., C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, "Low-loss photonic crystal fibers for transmission systems and their dispersion properties," Opt. Express, Vol. 12, 1372-1376, 2004.
doi:10.1364/OPEX.12.001372

16. Kunimasa, S. and K. Masanori, "Numerical modeling of photonic crystal fibers," IEEE J. Ligthwave Technol., Vol. 23, 3580-3590, 2005.

17. Seraji, F. E. and M. D. Talebzadeh, "Analysis of erbium doped holey fiber using fundamental space filling mode," Chin. Opt. Lett., Vol. 6, 644-647, 2008.
doi:10.3788/COL20080609.0644

18. Prudenzano, F., "Erbium-doped hole-assisted optical fiber amplifier: Design and optimization," IEEE J. Ligthwave Technol., Vol. 23, 330-340, 2005.
doi:10.1109/JLT.2004.838808

19. Cucinotta, A., F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, "Amplification properties of Er3+-doped photonic crystal fibers," IEEE J. Ligthwave Technol., Vol. 21, 782-788, 2003.
doi:10.1109/JLT.2003.809576

20. Poli, F., A. Cucinotta, D. Passaro, S. Selleri, J. Laegsgaard, and J. Broeng, "Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs," IEEE J. Select. Topic. Quant. Electron., Vol. 15, 54-60, 2009.
doi:10.1109/JSTQE.2008.2010265

21. Furusawa, K., T. Kogure, T. M. Monro, and D. J. Richardson, "High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber," Opt. Express, Vol. 44, 3452-3458, 2004.
doi:10.1364/OPEX.12.003452

22. Li, Y. F., C. Y. Wang, and M. L. Hu, "A fully vectorial effective index method for photonic crystal fibers: Application to dispersion calculation," Opt. Commun., Vol. 238, 29-33, 2004.
doi:10.1016/j.optcom.2004.04.040

23. Seraji, F. E., M. Rashidi, and M. Karimi, "Characteristics of holey fibers fabricated at different drawing speeds," Chin. Opt. Lett., Vol. 5, 131-134, 2007.

24. Varshney, S. K., M. P. Singh, and R. K. Sinha, "Propagation characteristics of photonic crystal fibers," Opt. Commun., Vol. 24, 192-198, 2003.

25. Li, Y. F., C. Y. Wang, Z. H. Wang, M. L. Hu, and L. Chai, "Analytical solution of the fundamental space filling mode of photonic crystal fibers," Opt. Laser Technol., Vol. 39, 322-326, 2007.
doi:10.1016/j.optlastec.2005.07.007

26. Midrio, M., M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: An analytical vectorial solution," IEEE J. Ligthwave Technol., Vol. 18, 1031-1037, 2000.
doi:10.1109/50.850750

27. Desurvire, E., Erbium Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994.

28. Giles, C. R. and E. Desurvire, "Modeling erbium-doped fiber amplifiers," IEEE. J. Lightwave Technol., Vol. 9, 271, 1991.
doi:10.1109/50.65886

29. Mathews, J. H. and K. K. Fink, Numerical Methods Using Matlab, 4 Ed., Prentice-Hall Inc., 2004.

30. Li, H., A. Mafi, A. Schulzgen, L. Li, V. L. Temyanko, N. Peyghambarian, and J. V. Moloney, "Analysis and design of photonic crystal fibers based on an improved effective-index method," IEEE J. Ligthwave Technol., Vol. 25, 1224-1230, 2007.
doi:10.1109/JLT.2007.893924

31. Broeng, J., D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol., Vol. 5, 305-330, 1999.
doi:10.1006/ofte.1998.0279

32. Mortensen, N. A., J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett., Vol. 28, 1879-1881, 2003.
doi:10.1364/OL.28.001879

33. Koshiba, M. and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett., Vol. 29, 1739-1741, 2004.
doi:10.1364/OL.29.001739

34. Saitoh, K., Y. Tsuchida, M. Koshiba, and N. A. Mortensen, "Endlessly single-mode holey fibers: The influence of core design," Opt. Express, Vol. 13, 10833-10839, 2005.
doi:10.1364/OPEX.13.010833

35. Barnes, W. L., R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross sections of Er3+ doped silica fibers," IEEE J. Quant. Electron., Vol. 27, 1004-1010, 1991.
doi:10.1109/3.83335

36. Desurvire, E. and J. Simpson, "Amplification of spontaneous emission in erbium-doped single-mode fibers," IEEE J. Ligthwave Technol., Vol. 7, 835-845, 1989.
doi:10.1109/50.19124

37. Becker, P. C., N. A. Olsson, and J. R. Simpson, Erbium Doped Fiber Amplifiers Fundamentals and Technology, Academic Press, London, 1999.

38. D'Orazio, A., M. de Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Refinement of Er3+-doped hole-assisted optical fiber amplifier," Opt. Express, Vol. 13, No. 25, 9970-9981, 2005.
doi:10.1364/OPEX.13.009970

39. Myslinsky, P., D. Nguyen, and J. Chrostowski, "Effects of concentration on the performance of erbiumdoped fiber amplifiers," IEEE J. Lightwave Technol., Vol. 15, 112-120, 1997.
doi:10.1109/50.552118