Vol. 21
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-05-19
Integral Method for a Capacitance Microscope That Is Based on Cylindric Metallic Surfaces
By
Progress In Electromagnetics Research B, Vol. 21, 203-218, 2010
Abstract
In this work we consider the problem of obtaining a capacitive image by scanning a "one-dimensional" surface of a closed conductor of arbitrary geometry. To solve our problem we propose a novel integral numerical method. The method is applied to different geometries by considering deterministic surfaces as complex as those with a fractal structure and random rough surfaces with Gaussian statistics. We find that the images obtained by simulating a prototype of a capacitive microscope, strongly depend on the interaction between the object and the probe. Despite this interaction, important information can be obtained regarding the statistical properties of the random roughness of the object surface.
Citation
Alberto Mendoza-Suarez, and Francisco Villa-Villa, "Integral Method for a Capacitance Microscope That Is Based on Cylindric Metallic Surfaces," Progress In Electromagnetics Research B, Vol. 21, 203-218, 2010.
doi:10.2528/PIERB10020209
References

1. Bugg, C. D. and P. J. King, "Scanning capacitance microscopy," J. Phys. E: Sci. Instrum., Vol. 21, 147-151, 1988.
doi:10.1088/0022-3735/21/2/003

2. Williams, C. C., W. P. Hough, and S. A. Rishton, "Scanning capacitance microscopy on a 25nm scale," Appl. Phys. Lett., Vol. 55, 203-205, 1989.
doi:10.1063/1.102096

3. Gomez-Monivas, S., J. J. Saenza, R. Carminati, and J. J. Greffet, "Theory of electrostatic probe microscopy: A simple perturbative approach," Appl. Phys. Lett., Vol. 76, 2955-2975, 2000.
doi:10.1063/1.126528

4. Jaensch, S., H. Scmidt, and M. Grundmann, "Quantitative scanning capacitance microscopy," Physica B, Vol. 376-377, 913-915, 2006.
doi:10.1016/j.physb.2005.12.227

5. Garca-Valenzuela, A., N. C. Bruce, and D. Kouznetsov, "An investigation into the applicability of perturbation techniques to solve integral equations for a parallel-plate capacitor with a rough electrode ," J. Phys. D: Appl. Phys., Vol. 31, 240-251, 1998.
doi:10.1088/0022-3727/31/2/011

6. Bruce, N. C., A. Garca-Valenzuela, and D. Kouznetsov, "Perturbation theory for surface-profile imaging with a capacitive probe," Appl. Phys. Lett., Vol. 77, 2066-2068, 2000.
doi:10.1063/1.1312852

7. Bruce, N. C., A. Garca-Valenzuela, and D. Kouznetsov, "The lateral resolution for imaging periodic conducting surfaces in capacitive microscopy," J. Phys. D: Appl. Phys., Vol. 33, 2890-2898, 2000.
doi:10.1088/0022-3727/33/22/305

8. Setala, T., M. Kaivola, and A. T. Friberg, "Evanescent and propagation electromagnetic fields in scattering from point-dipole structures," J. Opt. Soc. Am. A, Vol. 18, 678-688, 2001.
doi:10.1364/JOSAA.18.000678

9. Beladi, S., P. Girard, and G. Leveque, "Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions," J. Appl. Phys., Vol. 81, 1023-1030, 1997.
doi:10.1063/1.363884

10. Bruce, N. C., A. Garca-Valenzuela, and D. Kouznetsov, "Rough-surface capacitor: Approximations of the capacitance with elementary functions," J. Phys. D: Appl. Phys., Vol. 32, 2692-2702, 1999.
doi:10.1088/0022-3727/32/20/317

11. Bruce, N. C. and A. Garca-Valenzuela, "Capacitance measurement of Gaussian random rough surfaces with planar and corrugated electrodes," Meas. Sci. Technol., Vol. 16, 669-676, 2005.
doi:10.1088/0957-0233/16/3/007

12. Marchiando, J. F. and J. J. Kopanski, "Regression procedure for determining the dopant profile in semiconductors from scanning capacitance microscopy data," J. Appl. Phys., Vol. 92, 5798, 2002.
doi:10.1063/1.1512686

13. Giannazzo, F., D. Goghero, V. Raineri, S. Mirabella, and F. Priolo, "Scanning capacitance microscopy on ultranarrow doping profiles in Si," Appl. Phys. Lett., Vol. 83, 2659, 2003.
doi:10.1063/1.1613032

14. Giannazzo, F., D. Goghero, and V. Raineri, "Experimental aspects and modeling for quantitative measurements in scanning capacitance microscopy ," J. Vac. Sci. Technol. B, Vol. 22, 2391, 2004.
doi:10.1116/1.1795252

15. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model ," Progress In Electromagnetic Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201

16. Wang, C.-F., L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Efficient capacitance computation for three-dimensional structures based on adaptive integral method," Progress In Electromagnetic Research, Vol. 30, 33-46, 2001.
doi:10.2528/PIER00031302

17. Goharian, M., M. Soleimani, and G. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetic Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

18. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data ," Progress In Electromagnetic Research, Vol. 90, 171-182, 2009.
doi:10.2528/PIER09010202

19. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd Ed., Cambridge University Press, New York 2003.

20. Mendoza-Suarez, A. and E. R. Mendez, "Light scattering by a reentrant fractal surface," Appl. Opt., Vol. 36, 3521-3531, 1997.
doi:10.1364/AO.36.003521

21. Mendoza-Suarez, A., U. Ruz-Corona, and R. Espinosa-Luna, "E®ects of wall random roughness on TE and TM modes in a hollow conducting waveguide," Opt. Comm., Vol. 238, 291-299, 2004.
doi:10.1016/j.optcom.2004.05.007