Vol. 15
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-06-12
Compact Ultra-Wideband Phase Shifter
By
Progress In Electromagnetics Research Letters, Vol. 15, 89-98, 2010
Abstract
Design of a compact planar phase shifter is described that possesses ultra-wideband (UWB) performance. The proposed device is composed of 50Ω input/output microstrip-lines which are connected to a low-impedance rectangular microstrip patch, and located at close proximity to each other. The common ground-plane incorporates a slot-line terminated with two rectangular slots, which are located under the rectangular patches in order to provide effective electromagnetic coupling between the microstrip-line and slot-line. Thus a phase shifter is realized with ultra-wideband characteristics on a single substrate. The length of the slot-line and width of patch determines the desired phase shift required between the input and output ports. It is demonstrated that the design can provide phase shift anywhere between 4°- 27° across the entire UWB frequency band from 3.1 to 10.6 GHz. The simulated results show fixed phase shift 5.625°± 0.865°, 11.25°± 1.93°and 22.5°± 2.5°with insertion-loss less than 0.5 dB and return loss better than 12 dB across the ultra-wideband frequency span. The phase shifter is relatively compact in size with a dimension of 15×25 mm2. The phase shifter was fabricated and its performance measured to validate the simulation results.
Citation
Mohammad Naser-Moghadasi, Gholamreza R. Dadashzadeh, Abdolmehdi Dadgarpour, Farid Jolani, and Bal Singh Virdee, "Compact Ultra-Wideband Phase Shifter," Progress In Electromagnetics Research Letters, Vol. 15, 89-98, 2010.
doi:10.2528/PIERL10032606
References

1. Schiffman, B., "A new class of broadband microwave 90-degree phase shifters," IRE Trans. Microw. Theory Tech., Vol. 6, No. 4, 232-237, Apr. 1958.
doi:10.1109/TMTT.1958.1124543

2. Free, C. and C. Aitchison, "Improved analysis and design of coupled line phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 9, 2126-2131, Sep. 1995.
doi:10.1109/22.414549

3. Schiffman, B., "Multisection microwave phase-shift network," IEEE Trans. Microw. Theory Tech., Vol. 14, No. 4, 209, Apr. 1966.
doi:10.1109/TMTT.1966.1126220

4. Shelton, J. P. and J. A. Mosko, "Synthesis and design of wideband equal ripple TEM directional couplers and fixed phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 14, No. 10, 246-252, 462--473, 1966.
doi:10.1109/TMTT.1966.1126305

5. Guo, Y., Z. Zhang, and L. Ong, "Improved wideband schiffman phase shifter," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1196-1200, Mar. 2006.
doi:10.1109/TMTT.2005.864105

6. Taylor, J. and D. Prigel, "Wiggly phase shifters and directional couplers for radio-frequency hybrid-microcircuit applications," IEEE Trans. on Parts, Hybrids and Packaging, Vol. 12, No. 4, 317-323, 1976.
doi:10.1109/TPHP.1976.1135157

7. Ahn, H. and I. Wolff, "Asymmetric ring-hybrid phase shifters and attenuators," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 4, 1146-1155, 2002.
doi:10.1109/22.993418

8. Abbosh, A. M., "Ultra-wideband phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1935-1939, Sep. 2007.
doi:10.1109/TMTT.2007.904051

9. Cheng, Y. J., W. Hong, and K. Wu, "Broadband self-compensating phase shifter combining delay line and equal-length unequal-width phaser," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 1, 203-210, Jan. 2010.
doi:10.1109/TMTT.2009.2035942

10. Knorr, J., "Slot-line transitions," IEEE Trans. Microw. Theory Tech., Vol. 22, No. 5, 548-554, May 1974.
doi:10.1109/TMTT.1974.1128278