Vol. 14
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-05-07
Complementary Split Ring Resonators of Large Stop Bandwidth
By
Progress In Electromagnetics Research Letters, Vol. 14, 127-132, 2010
Abstract
Novel complementary split ring resonator (CSRR) is introduced to increase the stop bandwidth. Despite of their exotic behavior due to negative permittivity, their performance is limited by their stop bandwidth. The orientation of CSRR etched on the ground has strong coupling that can be altered for the increased stop bandwidth. The proposed design has measured stop band from 4~7.25 GHz whereas conventional CSRR of same dimension has stop band from 4.1~5.0 GHz.
Citation
Salman Khan, Xueguan Liu, Lvxia Shao, and Ying Wang, "Complementary Split Ring Resonators of Large Stop Bandwidth," Progress In Electromagnetics Research Letters, Vol. 14, 127-132, 2010.
doi:10.2528/PIERL10033105
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Falcone, F., T. Lopetegi, J. D. Baena, R. Marque's, F. Martin, and M. Sorolla, "Effective negative-epsilon stop-band microstrip lines based on complementary split ring resonators," IEEE Microwave Wireless Compon. Lett., Vol. 14, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

4. Khan, S. N., Q. L. Zhang, and S. He, "Left handed microstrip transmission line loaded with combination of split ring resonator and complementary-SRR," Journal of Electromagnetic Waves and Applications, Vol. 22, 1857-1863, 2008.
doi:10.1163/156939308786375109

5. Zhang, Q., S. N. Khan, and S. He, "Realization of left handedness through CSRRs and SRRs in microstrip line," Microwave and Optical Technology Letters, Vol. 51, No. 3, 757-760, March 2009.
doi:10.1002/mop.24141

6. Georgieva, A. R., "Investigation of a left-handed microstrip line," Microwave Review, 41-44, November 2006.

7. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter utilizing complementary split ring resonators," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.

8. Fu, S. and C. Tong, "A novel CSRR-based defected ground structure with dual-bandgap characteristics," Microwave and Optical Technology Letters, Vol. 51, No. 12, 2908-2910, December 2009.
doi:10.1002/mop.24776

9. Zhang, J., B. Cui, S. Lin, and X.-W. Sun, "Sharp-rejection low-pass ¯lter with controllable transmission zero using complementary split ring resonators," Progress In Electromagnetics Research, Vol. 69, 219-226, 2007.
doi:10.2528/PIER06122103

10. Afkhami, A. and M. Tayarani, "Spurious response suppression in hairpin filter using CSRR merged in the filter structure," Progress In Electromagnetics Research C, Vol. 11, 137-146, 2009.
doi:10.2528/PIERC09102001

11. Selga, J., G. Siso, M. Gil, J. Bonache, and G. Martin, "Microwave circuit miniaturization with complementary spiral resonators: Applications to high pass filter and dual band components ," Microwave and Optical Technology Letters, Vol. 51, No. 11, 2741-2725, November 2009.
doi:10.1002/mop.24715

12. Darcia, J., F. Aznar, M. Gil, J. Bonache, and F. Marjtin, "Size reduction of SRRs for metamaterial and left handed media design," PIERS Proceedings, Vol. 3, 266-269, 2007.

13. Ekmekci, E. and G. Turhan-Sayan, "Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters," Progress In Electromagnetics Research B, Vol. 12, 35-62, 2009.
doi:10.2528/PIERB08120405

14. Radonic, V., V. Crojecvic Bengin, and B. Jokanovic, On the Orientation of Split Ring Resonators in Metamaterials Media, Serbian, Nis, 645-648, September 2007.