Vol. 16
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-07-22
A Novel Tri-Band Printed Monopole Antenna with an Etched ∩-Shaped Slot and a Parasitic Ring Resonator for WLAN and WiMAX Applications
By
Progress In Electromagnetics Research Letters, Vol. 16, 61-68, 2010
Abstract
A novel tri-band printed monopole antenna with an etched ∩-shaped slot and a parasitic ring resonator is proposed for satisfying wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications simultaneously. The proposed antenna comprises a rectangular radiation patch with an arc-shaped edge and an embedded ∩-shaped slot on the top side and a parasitic ring resonator on the opposite side. The measured results show that the impedance bandwidths of the proposed antenna, defined by voltage standing wave ratio (VSWR)≤1.5, are 350 MHz (2370--2720 MHz), 680 MHz (3390--4070 MHz) and 1080 MHz (4920--6000 MHz), which cover the required band- widths for both WLAN (2400--2480 MHz, 5150--5350 MHz, and 5725--5825 MHz) and WiMAX (2500--2690 MHz, 3400--3690 MHz, 5250--5850 MHz) applications. Furthermore, good monopole-like radiation characteristics with moderate peak gains are obtained over the operating bands.
Citation
Shou-Tao Fan, Ying-Zeng Yin, Hui Li, Shi-Ju Wei, Xue-Hua Li, and Le Kang, "A Novel Tri-Band Printed Monopole Antenna with an Etched ∩-Shaped Slot and a Parasitic Ring Resonator for WLAN and WiMAX Applications," Progress In Electromagnetics Research Letters, Vol. 16, 61-68, 2010.
doi:10.2528/PIERL10061507
References

1. Ye, L. H., Q. X. Chu, and , "Compact dual-wideband antenna for WLAN/WiMAX applications," Microwave Optical Technology Letters, Vol. 52, 1228-1231, 2010.
doi:10.1002/mop.25156

2. Chien, Y. P., T. S. Horng, W. S. Chen, and H. H. Chien, "Dual wideband printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 149-151, 2007.
doi:10.1109/LAWP.2007.891957

3. Thomas, K. G. and M. Sreenivasan, "Compact triple band antenna for WLAN/WiMAX applications," Electronics Letters, Vol. 45, 811-813, 2009.
doi:10.1049/el.2009.1658

4. Song, Y., Y. C. Jiao, G. Zhao, and F. S. Zhang, "Multiband CPW-fed triangle-shaped monopole antenna for wireless applications," Progress In Electromagnetics Research, Vol. 70, 329-336, 2007.
doi:10.2528/PIER07020201

5. Si, L. M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

6. Thomas, K. G. and M. Sreenivasan, "A novel triple band printed antenna for WLAN/WiMAX applications," Microwave Optical Technology Letters, Vol. 51, 2481-2485, 2009.
doi:10.1002/mop.24650

7. Zuo, S. L., Y. Z. Yin, and Z. Y. Zhang, "A coupling-fed multiband antenna for WLAN/WiMAX applications," Microwave Optical Technology Letters, Vol. 52, 1283-1286, 2010.
doi:10.1002/mop.25197

8. Zhang, Z. Y., G. Fu, and S. L. Zuo, "A compact printed monopole antenna for WLAN and WiMAX applications," Microwave Optical Technology Letters, Vol. 52, 857-861, 2010.
doi:10.1002/mop.25060

9. Chen, W. S. and Y. H. Yu, "Compact design of T-type monopole antenna with asymmetrical ground plane for WLAN/WiMAX applications," Microwave Optical Technology Letters, Vol. 50, 515-519, 2008.
doi:10.1002/mop.23120

10. Mahatthanajatuphat, C., S. Saleekaw, and P. Akkaraekthalin, "A rhombic patch monopole antenna with modified minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

11. Chaimool, S. and K. L. Chung, "CPW-fed mirrored-L monopole antenna with distinct triple bands for Wi-Fi and WiMAX applications," Electronics Letters, Vol. 45, No. 18, 928-929, 2009.
doi:10.1049/el.2009.1390

12. Kim, D. Z., W. I. Son, W. G. Lim, H. L. Lee, and J. W. Yu, "Integrated planar monopole antenna with microstrip resonators having band-notched characteristics," IEEE Transactions on ntennas and Propagation, 2010.