Vol. 16
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-07-29
A Compact Microstrip-Line-Fed Slot Antenna with Dual Band-Notched Characteristics for WLAN/WiMAX Applications
By
Progress In Electromagnetics Research Letters, Vol. 16, 89-97, 2010
Abstract
A compact microstrip-line-fed antenna designed by inserting two pairs of strips into a rectangular slot for achieving triple-band operation is proposed. The antenna, which occupies a small size of only 40×32×1.6 mm3, utilizes inserted strips to generate dual band-notched characteristics so that three operating bands are able to be achieved, which range from 2.2 to 2.7, 3.07 to 3.86, and 5.13 to 6.23 GHz, sufficiently covering both the 2.4/5.2/5.8 GHz WLAN and 2.5/3.5/5.5 GHz WiMAX bands. In addition, the measured results show good monopole-like radiation patterns and stable antenna gains across the three operating bands.
Citation
Fan Li, Li-Shi Ren, Gang Zhao, and Yong-Chang Jiao, "A Compact Microstrip-Line-Fed Slot Antenna with Dual Band-Notched Characteristics for WLAN/WiMAX Applications," Progress In Electromagnetics Research Letters, Vol. 16, 89-97, 2010.
doi:10.2528/PIERL10061704
References

1. Gu, J.-H., S. S. Zhong, L. L. Xue, and Z. Sun, "Dual-band monopole antenna with L-shaped strips for 2.4/5 GHz WLAN applications," Microwave Opt. Technol. Lett., Vol. 50, 2830-2833, 2008.
doi:10.1002/mop.23797

2. Djaiz, A., M. A. Habib, M. Nedil, and T. A. Denidni, "Compact CPW-fed matched dual-band monopole antenna using spiral resonators," Microwave Opt. Technol. Lett., Vol. 52, 1425-1427, 2010.
doi:10.1002/mop.25218

3. Liu, H.-W., C.-H. Ku, and C.-F. Yang, "Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 240-243, 2010.
doi:10.1109/LAWP.2010.2044860

4. Ren, W., "Compact dual-band slot antenna for 2.4/5 GHz WLAN applications," Progress In Electromagnetics Research B, Vol. 8, 319-327, 2008.
doi:10.2528/PIERB08071406

5. Zhu, J. and G. V. Eleftheriades, "Dual-band meta metamaterial-inspired small monopole antenna for WiFi applications," Electronics Letters, Vol. 45, 1104-1106, 2009.
doi:10.1049/el.2009.2107

6. Liu, C. S., C. N. Chiu, and S. M. Deng, "A compact Disc-slit monopole antenna for mobile devices," IEEE Antennas Wireless Propag. Lett., Vol. 7, 251-254, 2008.
doi:10.1109/LAWP.2008.920751

7. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

8. Li, X., L. Yang, S. X. Gong, and Y. J. Yang, "Bidirectional high gain antenna for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 6, 99-106, 2009.
doi:10.2528/PIERL08122601

9. Xiong, J. P., L. Liu, Y. Z. Yin, J. Chen, and Q. Ma, "Dual-band back-to-back F-shaped antenna with elliptic conductor-backed plane for WLAN/WiMAX applications," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1140-1147, 2008.
doi:10.1163/156939308784158805

10. Ye, L. H. and Q. X. Chu, "Compact dual-band wide band antenna for WLAN/WiMAX applications," Microwave Opt. Technol. Lett., Vol. 52, 1228-1231, 2010.
doi:10.1002/mop.25156

11. Lee, B.-Y., W. S. Chen, and P. Y. Chang, "A compact microstrip-line-fed slot antenna for Wideband operation," Asia Pacific Microwave Conference, 1884-1886, 2009.
doi:10.1109/APMC.2009.5384201

12. Ryu, K.-S. and A. A. Kishk, "UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band," IEEE Trans. Antennas Propag., Vol. 57, 3942-3950, 2009.
doi:10.1109/TAP.2009.2027727