Vol. 23
Latest Volume
All Volumes
PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-22
Strong Magnetic Field Induced Segregation and Self-Assembly of Micrometer Sized Non-Magnetic Particles
By
Progress In Electromagnetics Research B, Vol. 23, 199-214, 2010
Abstract
Micrometer and sub-micrometer sized non-magnetic particles were manipulated by an external strong magnetic field (e.g. 10 Tesla) with a high gradient. During the strong magnetic field effects, segregation of the non-magnetic particles was observed which could not be realised only with gravitational field. Numerical calculations were subsequently carried out to understand the effects on the insulating particles in a conductive liquid matrix. The migration of micrometer sized particles is obviously enhanced by the magnetic field gradient. Combining the experimental results and theoretical analysis, particle-particle magnetic interaction was found to influence the overall segregation of the particles as well. Magnetised by the strong magnetic field, magnetic interaction between non-magnetic particles becomes dominant and a self-assembly behavior can be demonstrated. Various factors such as the magnetic dipole-dipole interaction and chain-chain interaction, are governing the particles assembly. According to calculations, magnetic field should be strong enough, at least 7 T in order to obtain the assembly morphologies in the present case.
Citation
Zhi Sun Muxing Guo Jef Vleugels Omer Van der Biest Bart Blanpain , "Strong Magnetic Field Induced Segregation and Self-Assembly of Micrometer Sized Non-Magnetic Particles," Progress In Electromagnetics Research B, Vol. 23, 199-214, 2010.
doi:10.2528/PIERB10062104
http://www.jpier.org/PIERB/pier.php?paper=10062104
References

1. Asai, S., K. Sassa, and M. Tahashi, "Crystal orientation of non-magnetic materials by imposition of a high magnetic field," Science and Technology of Advanced Materials, Vol. 4, 455-460, 2003.
doi:10.1016/j.stam.2003.07.001

2. Motokawa, M., "Physics in high magnetic fields," Rep. Prog. Phys., Vol. 67, 1995-2052, 2004.
doi:10.1088/0034-4885/67/11/R02

3. Hangarter, C. M., Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, "Hierarchical magnetic assembly of nanowires," Nanotechnology, Vol. 18, 205305, 2007.
doi:10.1088/0957-4484/18/20/205305

4. Ren, Z., X. Li, Y. Sun, Y. Gao, K. Deng, and Y. Zhong, "Influence of high magnetic field on peritectic transformation during solidification of Bi-Mn alloy," Calphad, Vol. 30, 277-285, 2006.
doi:10.1016/j.calphad.2006.03.004

5. Reitz, J. R. and F. J. Milford, Foundations of Electromagnetic Theory, Addison-Wesley Publishing Company, London, England, 1962.

6. Larachi, F. and M. C. Munteanu, "Magnetic emulation of microgravity for earth-bound multiphase catalytic reactor studies potentialities and limitations," AIChE J., Vol. 55, 1200-1216, 2009.
doi:10.1002/aic.11752

7. Sun, Z., L. Zhang, M. Guo, J. Vleugels, O. van der Biest, and B. Blanpain, "Non-magnetic anisotropic-materials preparation by a strong magnetic field during the solidification of a hypereutectic Al-Cu alloy," EPL, Vol. 89, 64002, 2010.
doi:10.1209/0295-5075/89/64002

8. Takayama, T., Y. Ikezoe, H. Uetake, N. Hirota, and K. Kitazawa, "Self-organization of nonmagnetic spheres by magnetic field," Appl. Phys. Lett., Vol. 86, 234103-234103, 2005.
doi:10.1063/1.1947371

9. Berry, M. V. and A. K. Geim, "Of flying frogs and levitrons," Eur. J. Phys., Vol. 18, 307-313, 1997.
doi:10.1088/0143-0807/18/4/012

10. Crangle, J., The Magnetic Properties of Solids, Edwad Arnold Limited, London, 1977.

11. Bishop, K. J. M., C. E. Wilmer, S. Soh, and B. A. Grzybowski, "Nanoscale forces and their uses in self-assembly," Small, Vol. 5, 1600-1630, 2009.
doi:10.1002/smll.200900358

12. Hill, R. J. A., V. L. Sedman, S. Allen, P. Williams, M. Paoli, L. Adler-Abramovich, E. Gazit, L. Eaves, and S. J. B. Tendler, "Alignment of aromatic peptide tubes in strong magnetic fields," Advanced Materials, Vol. 19, 4474-4479, 2007.
doi:10.1002/adma.200700590

13. Boamfa, M. I., S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, "Magnetic field alignment of liquid crystals for fast display applications," Advanced Materials, Vol. 17, 610-614, 2005.
doi:10.1002/adma.200400954

14. Garmestani, H., M. S. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S. S. Sablin, and M. Y. Hussaini, "Polymer-mediated alignment of carbon nanotubes under high magnetic fields," Advanced Materials, Vol. 15, 1918-1921, 2003.
doi:10.1002/adma.200304932

15. Yamaguchi, M. and Y. Tanimoto, Magneto-science (Magnetic Field Effects on Materials: Fundamentals and Applications), Springer-Verlag, Berlin, Heidelberg, New York, 2006.

16. Sun, Z., M. Guo, F. Verhaeghe, J. Vleugels, O. van der Biest, and B. Blanpain, "Magnetic interaction between two non-magnetic particles migrating in a conductive fluid induced by a strong magnetic field-an analytical approach," Progress In Electromagnetics Research, Vol. 103, 1-16, 2010.
doi:10.2528/PIER10022607

17. Sun, Z., T. Kokalj, M. Guo, F. Verhaeghe, O. van der Biest, B. Blanpain, and K. van Reusel, "Effect of the strong magnetic field on the magnetic interaction between two non-magnetic particles migrating in a conductive fluid," EPL, Vol. 85, 14002, 2009.
doi:10.1209/0295-5075/85/14002

18. Chester, W., "The effect of a magnetic field on stokes flow in a conducting fluid," Journal of Fluid Mechanics, Vol. 3, 304-308, 1957.
doi:10.1017/S0022112057000671

19. Sun, Z., M. Guo, J. Vleugels, O. van der Biest, and B. Blanpain, "Numerical simulations of the `strong magnetic field effects' on micrometer sized insulating (inert) particle(s) moving in a conductive fluid," Physical Review E, submitted, 2010.

20. Maki, S., M. Ataka, T. Tagawa, and H. Ozoe, "Natural convection of a paramagnetic liquid controlled by magnetization force," AIChE J., Vol. 51, 1096-1103, 2005.
doi:10.1002/aic.10460

21. Sun, Z., M. Guo, J. Vleugels, O. van der Biest, and B. Blanpain, "Numerical calculations on inclusion removal from liquid metals under strong magnetic fields," Progress In Electromagnetics Research, Vol. 98, 359-373, 2009.
doi:10.2528/PIER09100501

22. Weast, R. C., M. J. Astle, and W. H. Beyer, CRC handbook of Chemistry and Physics, CRC Press, Inc., Florida, USA, 1983--1984.

23. Sun, C., H. Geng, N. Zhang, X. Teng, and L. Ji, "Viscous feature of Sb-Bi alloy under magnetic field," Materials Letters, Vol. 62, 73-76, 2008.
doi:10.1016/j.matlet.2007.04.070

24. Ghauri, S. and M. Ansari, "Increase of water viscosity under the influence of magnetic field," Journal of Applied Physics, Vol. 100, 066101-066102, 2006.
doi:10.1063/1.2347702

25. Yasuda, H., I. Ohnaka, O. Kawakami, K. Ueno, and K. Kishio, "Effect of magnetic field on solidification in Cu-Pb monotectic alloys," ISIJ Inter., Vol. 43, 942-949, 2003.
doi:10.2355/isijinternational.43.942

26. Davidson, P. A., An introduction to Magnetohydrodynamics, Cambridge University Press, 2001.
doi:10.1017/CBO9780511626333

27. Butter, K., P. Bomans, P. M. Frederik, G. J. Vroege, and A. P. Philipse, "Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy," Nat. Mater., Vol. 2, 88-91, 2003.
doi:10.1038/nmat811

28. Fang, W., Z. He, X. Xu, Z. Mao, and H. Shen, "Magnetic-field-induced chain-like assembly structures of Fe3O4 nanoparticles," EPL, Vol. 77, 68004, 2007.
doi:10.1209/0295-5075/77/68004