Vol. 24
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-26
Magnetic Field Created by a Uniformly Magnetized Tile Permanent Magnet
By
Progress In Electromagnetics Research B, Vol. 24, 17-32, 2010
Abstract
This paper presents a general analytical formulation for calculating the three-dimensional magnetic field distribution produced by Halbach structures with radial or axial polarization directions. Our model allows us to study tile permanent magnets of various magnetization directions and dimensions. The three magnetic field components are expressed in terms of analytical and semi-analytical parts using only one numerical integration. Consequently, the computational cost of our model is lower than 1 s for calculating the magnetic field in any point of space. All our expressions have been checked with previous analytical models published in the literature. Then, we present two optimized permanent magnet structures generating sinusoidal radial fields.
Citation
Romain Ravaud, Guy Lemarquand, and Valerie Lemarquand, "Magnetic Field Created by a Uniformly Magnetized Tile Permanent Magnet," Progress In Electromagnetics Research B, Vol. 24, 17-32, 2010.
doi:10.2528/PIERB10062209
References

1. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Magnetic field in MRI yokeless devices: Analytical approach," Progress In Electromagnetics Research, Vol. 94, 327-341, 2009.
doi:10.2528/PIER09061205

2. Halbach, K., "Strong rare earth cobalt quadrupoles," IEEE Trans. Magn., Vol. 26, No. 3, 3882-3884, 1979.

3. Marble, A. E., "Strong, stray static magnetic fields," IEEE Trans. Magn., Vol. 44, No. 5, 576-580, 2008.
doi:10.1109/TMAG.2008.918278

4. Chang, W., K. Chen, and L. Hwang, "Single-sided mobile NMR with a halbach magnet," Magnetic Resonance Imaging, Vol. 24, No. 8, 1095-1102, 2006.
doi:10.1016/j.mri.2006.04.005

5. Chen, J. and C. Xu, "An improved discrete configuration of a cylinder magnet for portable nuclear magnetic resonance instruments," J. Appl. Phys., Vol. 101, No. 12, 2007.

6. Marble, A. E., I. V. Mastikhui, B. G. Colpitts, and B. J. Balcom, "Designing static fields for unilateral magnetic resonance by a scalar potential approach," IEEE Trans. Magn., Vol. 43, No. 5, 1903-1911, 2007.
doi:10.1109/TMAG.2006.889538

7. Jian, L. and K. T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Electromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301

8. Ryu, J. S., Y. Yao, C. S. Koh, and Y. J. Shin, "Development of permanent magnet assembly for mri devices," IEEE Trans. Magn., Vol. 42, No. 4, 1351-1353, 2006.
doi:10.1109/TMAG.2006.871563

9. Thompson, M. R., R. W. Brown, and V. C. Srivastava, "An inverse approach to the design of mri main magnets," IEEE Trans. Magn., Vol. 30, No. 1, 108-112, 1994.
doi:10.1109/20.272522

10. Baran, W. and M. Knorr, "Synchronous couplings with SmCo5 magnets," 2nd Int. Workshop on RECo Permanent Magnets and Their Applications, 140-151, Dayton, Ohio, USA, 1976.

11. Furlani, E. P., "Analysis and optimization of synchronous couplings," J. Appl. Phys., Vol. 79, 4692-4694, 1996.
doi:10.1063/1.361872

12. Elies, P. and G. Lemarquand, "Analytical study of radial stability of permanent magnet synchronous couplings," IEEE Trans. Magn., Vol. 35, No. 4, 2133-2136, 1999.
doi:10.1109/20.774183

13. Ravaud, R. and G. Lemarquand, "Magnetic couplings with cylindrical and plane air gaps: Influence of the magnet polarization direction," Progress In Electromagnetics Research B, Vol. 16, 333-349, 2009.
doi:10.2528/PIERB09051903

14. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Permanent magnet couplings: Field and torque three-dimensional expressions based on the coulombian model," IEEE Trans. Magn., Vol. 45, No. 4, 1950-1958, 2009.
doi:10.1109/TMAG.2008.2010623

15. Wang, J., G. W. Jewell, and D. Howe, "Design optimisation and comparison of permanent magnet machines topologies," IEE. Proc. Elect. Power Appl., Vol. 148, 456-464, 2001.
doi:10.1049/ip-epa:20010512

16. Furlani, E. P., "Computing the field in permanent-magnet axialfield motors," IEEE Trans. Mag., Vol. 30, No. 5, 3660-3663, 1994.
doi:10.1109/20.312734

17. Furlani, E. P., "Field analysis and optimization of NdFeB axial field permanent magnet motors," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
doi:10.1109/20.619603

18. Marinescu, M. and N. Marinescu, "New concept of permanentmagnet excitation for electrical machines," IEEE Trans. Magn., Vol. 28, 1390-1393, 1992.
doi:10.1109/20.123952

19. Babic, S. I., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3D linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn., Vol. 36, No. 5, 3125-3127, 2000.
doi:10.1109/20.908707

20. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.

21. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by arc-shaped permanent magnets radially magnetized," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
doi:10.2528/PIER09042105

22. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Magnetic field created by tile permanent magnets," IEEE Trans. Magn., Vol. 45, No. 7, 2920-2926, 2009.
doi:10.1109/TMAG.2009.2014752

23. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Magnetic field produced by a tile permanent magnet whose polarization is both uniform and tangential," Progress In Electromagnetics Research B, Vol. 13, 1-20, 2009.
doi:10.2528/PIERB08121901

24. Ravaud, R. and G. Lemarquand, "Discussion about the magnetic field produced by cylindrical halbach structures," Progress In Electromagnetics Research B, Vol. 13, 275-308, 2009.
doi:10.2528/PIERB09012004

25. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
doi:10.1109/20.179441