Vol. 14
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-08-24
Frequency Tuneable Single-Negative Bistable Heterostructure
By
Progress In Electromagnetics Research M, Vol. 14, 33-44, 2010
Abstract
The nonlinear responses of a one-dimensional heterostructure containing two kinds of single-negative materials with an air gap are investigated. It is shown that the frequency of zero-phase gap bistable heterostructure can be tuned simply by adjusting the width of air gap. On the other hand, the optical bistability is achieved at very low values of input intensity due to the enhancement of Kerr nonlinearity near the frequency of the defect mode. It is shown that transmission of the structure is relatively insensitive to incident angle and losses.
Citation
Samad Roshan Entezar , "Frequency Tuneable Single-Negative Bistable Heterostructure," Progress In Electromagnetics Research M, Vol. 14, 33-44, 2010.
doi:10.2528/PIERM10070301
http://www.jpier.org/PIERM/pier.php?paper=10070301
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197, 2008.
doi:10.2528/PIERB07102903

4. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omnidirection reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133, 2008.
doi:10.2528/PIERB08020601

5. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, "Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials," Appl. Phys. Lett., Vol. 83, 5386, 2003.
doi:10.1063/1.1637452

6. Xu, K. Y., X. G. Zheng, C. L. Li, and W. L. She, "Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index," Phys. Rev. E., Vol. 71, 066604, 2005.
doi:10.1103/PhysRevE.71.066604

7. Essadqui, A., J. Ben-Ali, D. Bria, B. Djafari-Rouhani, and A. Nougaoui, "Photonic band structure of 1D periodic composite system with left handed and right handed materials by green function approach," Progress In Electromagnetics Research B, Vol. 23, 229, 2010.
doi:10.2528/PIERB10032404

8. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349, 2009.
doi:10.2528/PIER09031306

9. Veselago, V. S., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77, 2001.
doi:10.1126/science.1058847

11. Zhu, S. Y., N. H. Liu, H. Zheng, and H. Chen, "Time delay of light propagation through defect modes of one-dimensional photonic band-gap structures," Opt. Commun., Vol. 174, 139, 2000.
doi:10.1016/S0030-4018(99)00710-5

12. Fredkin, D. R. and A. Ron, "Effectively left-handed (negative index) composite material," Appl. Phys. Lett., Vol. 81, 1753, 2002.
doi:10.1063/1.1505119

13. Lakhtakia, A. and J. A. Sherwin, "Orthorhombic materials and perfect lenses," Int. J. Infrared Millim. Waves, Vol. 24, 19, 2003.
doi:10.1023/A:1021675514687

14. Lakhtakia, A. and C. M. Krowne, "Restricted equivalence of paired epsilon-negative and mu-negative layers to a negative phase-velocity material," Optik, Vol. 114, 305, Stuttgart, 2003.
doi:10.1078/0030-4026-00266

15. Alù, A. and N. Engheta, "Pairing an Epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propag., Vol. 51, 2558, 2003.
doi:10.1109/TAP.2003.817553

16. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," Phys. Rev. E, Vol. 69, 066607, 2004.
doi:10.1103/PhysRevE.69.066607

17. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, "Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials," J. Appl. Phys., Vol. 98, 013101, 2005.
doi:10.1063/1.1949273

18. Roshan Entezar, S., "Simultaneous TE and TM surface polaritons in a bilayer composed of a single-negative materials," Progress In Electromagnetics Research M, Vol. 7, 179, 2009.
doi:10.2528/PIERM09051102

19. Wang, L., H. Chen, and S. Zhu, "Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials," Phys. Rev. B, Vol. 70, 245102, 2004.
doi:10.1103/PhysRevB.70.245102

20. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behavior of one dimensional photonic crystal containing negative index materials," Progress In Electromagnetics Research M, Vol. 2, 15, 2008.
doi:10.2528/PIERM08021501

21. Rahimi, H., "Backward tamm states in 1D single-negative metamaterial photonic crystals," Progress In Electromagnetics Research Letters, Vol. 13, 149, 2010.
doi:10.2528/PIERL09121305

22. Guan, G. S., H. T. Jiang, H. Q. Li, Y. W. Zhang, H. Chen, and S. Y. Zhu, "Tunneling modes of photonic heterostructures consisting of single-negative materials," Appl. Phys. Lett., Vol. 88, 211112, 2006.
doi:10.1063/1.2207218

23. Liu, C.-C., Y.-H. Chang, T.-J. Yang, and C.-J. Wu, "Narrowband filter in a heterostructured multilayer containing ultrathin metallic films," Progress In Electromagnetics Research, Vol. 96, 329, 2009.
doi:10.2528/PIER09090704

24. Feise, M. W., I. V. Shadrivov, and Y. S. Kivshar, "Tunable transmission and bistability in left-handed band-gap structures," Appl. Phys. Lett., Vol. 85, 1451, 2004.
doi:10.1063/1.1787612

25. Pan, T., C. J. Tang, L. Gao, and Z. Y. Li, "Optical bistability of nonlinear multilayered structure containing left-handed materials," Phys. Lett. A, Vol. 337, 473, 2005.
doi:10.1016/j.physleta.2005.02.014

26. Hegde, R. S. and H. G. Winful, "Optical bistability in periodic nonlinear structures containing left handed materials," Microw. Opt. Tech. Lett., Vol. 46, 528, 2005.
doi:10.1002/mop.21037

27. Hegde, R. S. and H. G. Winful, "Zero-n gap soliton," Opt. Lett., Vol. 30, 1852, 2005.
doi:10.1364/OL.30.001852

28. Wang, S. N. and L. Gao, "Nonlinear responses of the periodic structure composed of single negative materials," Opt. Comm., Vol. 267, 197, 2006.
doi:10.1016/j.optcom.2006.05.065

29. Chen, Y., "Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials ," J. Phys. D: Appl. Phys., Vol. 42, 075106, 2009.
doi:10.1088/0022-3727/42/7/075106

30. Feise, M. W., I. V. Shadrivov, and Y. S. Kivshar, "Bistable diode action in left-handed periodic structures," Phys. Rev. E, Vol. 71, 037602, 2005.
doi:10.1103/PhysRevE.71.037602

31. Wang, S. M., C. J. Tang, T. Pan, and L. Gao, "Bistability and gap soliton in one-dimensional photonic crystal containing single-negative materials," Physics Letters A, Vol. 348, 424, 2006.
doi:10.1016/j.physleta.2005.08.037

32. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785, 1998.
doi:10.1088/0953-8984/10/22/007

33. Pendry, J. B., A. J. Holden, D. J.Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techniques, Vol. 47, 2075, 1999.
doi:10.1109/22.798002

34. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

35. Zharov, A. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Phys. Rev. Lett., Vol. 91, 37401, 2003.
doi:10.1103/PhysRevLett.91.037401

36. Samoc, M., A. Samoc, B. Luther-Davies, and M. Woodru®, "The concept of guiding light with light and negative third-order optical nonlinearities of organics," Pure Appl. Opt., Vol. 5, 681, 1996.
doi:10.1088/0963-9659/5/5/021

37. Ohke, S., T. Umeda, and Y. Cho, "Power-limiting action of optical waveguide having negative nonlinear claddings," Jpn. J. Appl. Phys., Vol. 37, L1312, 1998.
doi:10.1143/JJAP.37.L1312

38. Maeda, Y., "Optical bistability derived from the negative nonlinear absorption effect in erbium doped materials," Mater. Sci. Eng. B, Vol. 81, 174, 2001.
doi:10.1016/S0921-5107(00)00730-3

39. Helseth, L. E., "Breaking the diffraction limit in nonlinear materials," Opt. Commun., Vol. 256, 435, 2005.
doi:10.1016/j.optcom.2005.06.074

40. Liu, N.-H., S.-Y. Zhu, H. Chen, and X. Wu, "Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect," Phys. Rev. E, Vol. 65, 046607, 2002.
doi:10.1103/PhysRevE.65.046607

41. Wang, L.-F., N.-H. Liu, Q. Lin, and S. Y. Zhu, "Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals," Phys. Rev. E, Vol. 70, 016601, 2004.
doi:10.1103/PhysRevE.70.016601

42. He, J. and M. Cada, "Combined distributed feedback and Fabry-Perot structures with a phase-matching layer for optical bistable devices," Appl. Phys. Lett., Vol. 61, 2150, 1992.
doi:10.1063/1.108303

43. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge University Press, Cambridge, 1999.

44. Fenge, T., Y. Li, H. Jiang, Y. Sun, L. He, H. Li, Y. Zhang, Y. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media," Phys. Rev. E, Vol. 79, 026601, 2009.
doi:10.1103/PhysRevE.79.026601