Vol. 18
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-28
Electric Charges That Behave as Magnetic Monopoles
By
Progress In Electromagnetics Research Letters, Vol. 18, 19-28, 2010
Abstract
The memristor theory of Chua [1] provides a connection with the charge and magnetic flux in an electric circuit. We define a similar relation for the electric and magnetic flux densities in electromagnetism. Such an attempt puts forward interesting results. For example, the magnetic charges do not exist in nature however the electric charges behave as the magnetic monopoles in special media. We support our theory with results of the recent experiments on materials named as spin ice.
Citation
Yusuf Ziya Umul, "Electric Charges That Behave as Magnetic Monopoles," Progress In Electromagnetics Research Letters, Vol. 18, 19-28, 2010.
doi:10.2528/PIERL10072607
References

1. Chua, L. O., "Memristor --- The missing circuit element," IEEE Trans. Circuit Theory, Vol. 18, No. 5, 507-519, 1971.
doi:10.1109/TCT.1971.1083337

2. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Phil. Trans. R. Soc. Lond., Vol. 155, No. 1, 459-512, 1865.

3. Kavehei, O., A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi, and D. Abbot, "The fourth element: Characteristics, modeling and the electromagnetic theory of the memristor," Proc. R. Soc. A, Vol. 466, No. 8, 2175-2202, 2010.
doi:10.1098/rspa.2009.0553

4. Strukov, D. B., G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, Vol. 453, No. 9, 80-83, 2008.
doi:10.1038/nature06932

5. Williams, R., "How we found the missing memristor," IEEE Spectr., Vol. 45, No. 12, 28-35, 2008.
doi:10.1109/MSPEC.2008.4687366

6. Chua, L. O. and S. M. Kang, "Memristive devices and systems," Proc. IEEE, Vol. 64, No. 2, 209-223, 1976.
doi:10.1109/PROC.1976.10092

7. Tour, J. M. and T. He, "The fourth element," Nature, Vol. 453, No. 9, 42-43, 2008.
doi:10.1038/453042a

8. Kumar, M. J., "Memristor --- Why do we have to know all about it?," IETE Tech. Rev., Vol. 26, No. 1, 3-6, 2009.
doi:10.4103/0256-4602.48462

9. Di Ventra, M., Y. V. Pershin, and L. O. Chua, "Circuit elements with memory: Memristors, memcapacitors, and meminductors," Proc. IEEE, Vol. 97, No. 10, 1717-1724, 2009.
doi:10.1109/JPROC.2009.2021077

10. Castelnovo, C., R. Moessner, and S. L. Sondhi, "Magnetic monopoles in spin ice," Nature, Vol. 451, No. 1, 42-45, 2008.
doi:10.1038/nature06433

11. Quantised singularities in the electromagnetic field "Dirac, P. A. M.," Proc. R. Soc. Lond. A, Vol. 133, 60-72, 1931.
doi:10.1098/rspa.1931.0130

12. Vorob'ev, P. V., I. V. Kolokolov, and V. V. Ianovski, "On a new method of search for magnetic monopoles," Astron. Astrophys. Trans., Vol. 19, 675-683, 2000.

13. Rajasekaran, G., "The discovery of Dirac equation and its impact on present-day physics," Reson., Vol. 6, No. 8, 59-74, 2003.
doi:10.1007/BF02866760

14. Mukhi, S., "Dirac's conception of the magnetic monopole, and its modern avatars," Reson., Vol. 8, No. 8, 17-26, 2005.
doi:10.1007/BF02866756

15. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 2003.

16. Balanis, C. A., Antenna Theory Analysis and Design, Wiley-Interscience, New Jersey, 2005.

17. Schelkunoff, S. A., "On diffraction and radiation of electromagnetic waves," Phys. Rev., Vol. 56, No. 4, 308-316, 1939.
doi:10.1103/PhysRev.56.308

18. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using the equivalent sources," Progress In Electromagnetics Research, Vol. 71, 95-107, 2007.
doi:10.2528/PIER07020801

19. Umul, Y. Z., "Improved equivalent source theory," J. Opt. Soc. Am. A, Vol. 26, No. 8, 1798-1804, 2009.
doi:10.1364/JOSAA.26.001798

20. Umul, Y. Z., "Rigorous expressions for the equivalent edge currents," Progress In Electromagnetics Research, Vol. 15, 77-94, 2009.

21. Wilson, M., "Elementary excitations in spin ice take the form of magnetic monopoles," Phys. Today, Vol. 61, No. 3, 16-19, 2008.
doi:10.1063/1.2897936

22. Jaubert, L. D. C. and P. C. W. Holdsworth, "Signature of magnetic monopole and Dirac string dynamics in spin ice," Nature Phys., Vol. 5, No. 6, 258-261, 2009.
doi:10.1038/nphys1227

23. Gingras, M. J. P., "Observing monopoles in a magnetic analog of ice," Sci., Vol. 326, No. 5951, 375-376, 2009.
doi:10.1126/science.1181510

24. Morris, D. J. P., D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffman, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, "Dirac strings and magnetic monopoles in spin ice Dy2Ti2O7," Sci., Vol. 326, No. 5951, 411-414, 2009.
doi:10.1126/science.1178868

25. Kadowaki, H., N. Doi, Y. Aoki, Y. Tabata, T. J. Sato, J. W. Lynn, K. Matsuhira, and Z. Hiroi, "Observation of magnetic monopoles in spin ice ," J. Phys. Soc. Jpn., Vol. 78, No. 10, 103706, 2009.
doi:10.1143/JPSJ.78.103706

26. Volpe, G., "Magnetic break up," Opt. Photon. Focus, Vol. 7, S. 3, 2009.

27. Castelnovo, C., "Coulomb physics in spin ice: From magnetic monopoles to magnetic currents," ChemPhysChem, Vol. 11, No. 3, 557-559, 2010.
doi:10.1002/cphc.200900873

28. Schuman, A., B. Sothmann, P. Szary, and H. Zabel , "Charge ordering of magnetic dipoles in artificial honeycomb patterns," Appl. Phys. Lett., Vol. 97, No. 2, 022509, 2010.
doi:10.1063/1.3463482

29. Wolf, S. A., D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, "Spintronics: A spin-based electronics vision for the future," Science, Vol. 294, No. 5546, 1488-1495, 2001.
doi:10.1126/science.1065389

30. Smirl, A. L., M. J. Stevens, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, "Ballistic spin transport without net charge ransport in quantum wells," Semicond. Sci. Technol., Vol. 19, No. 4, S369, 2004.
doi:10.1088/0268-1242/19/4/121

31. Zutic, I., J. Fabian, and S. Das Sarma, "Spintronics: Fundamentals and applications," Rev. Mod. Phys., Vol. 76, No. 2, 323-410, 2004.
doi:10.1103/RevModPhys.76.323