Vol. 14
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-08-25
Ec Modelling and Enhancement Signals in Cfrp Inspection
By
Progress In Electromagnetics Research M, Vol. 14, 45-60, 2010
Abstract
Non Destructive Testing techniques are more and more exploited in order to quickly and cheaply recognize flaws into the inspected materials, specially for carbon fiber reinforced polymers in recent years. Their production which are widely used both in civil and military applications, is an elaborate process un-free from faults and problems. Problems during the manufacturing, such as plies' overlapping, can cause flaws in the resulting material, this way compromising its integrity. Within this framework, this work aims to propose a design of ferrite core probe for eddy current non destructive evaluation, in order to investigate the presence of defects in carbon fiber epoxy composite materials. In this context, modelling is a powerful tool for inspection improvements. It helps probe-coil designers to optimize sensors for each examination requirement, providing better understanding of the involved physics, supporting operator training and increasing defect analysis reliability. Particularly, Finite Element based analyzes will be carried out into this path. After this step, in order to improve the quality of simulated measurement, a filtering technique has been exploited in order to improve the accuracy and performance of the flaw detection.
Citation
Giuseppe Megali Diego Pellicano Matteo Cacciola Salvatore Calcagno Mario Versaci Francesco Carlo Morabito , "Ec Modelling and Enhancement Signals in Cfrp Inspection," Progress In Electromagnetics Research M, Vol. 14, 45-60, 2010.
doi:10.2528/PIERM10072705
http://www.jpier.org/PIERM/pier.php?paper=10072705
References

1. Yamada, S., M. Katou, M. Iwhara, and F. P. Dawson, "Eddy-current testing," IEEE Trans. Magn., Vol. 31, No. 6, 3185-3187, 1995.
doi:10.1109/20.490322

2. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1995.

3. Nevadunsky, J. J., "Early fatigue damage detection in composite materials," J. Comp. Mater., Vol. 9, 394-408, 1975.
doi:10.1177/002199837500900409

4. De Goeje, M. P. and K. E. D. Wapenaar, "Non-destructive inspection of carbon fiber-reinforced plastics using eddy current methods," Composites, Vol. 23, No. 9, 147-157, 1992.
doi:10.1016/0010-4361(92)90435-W

5. Lange, R. and G. Mook, "Structural analysis of CFRP using eddy current methods," NDT&E International, Vol. 27, No. 5, 241-248, 1994.
doi:10.1016/0963-8695(94)90128-7

6. Knibbs, R. H. and J. B. Morris, "The effects of fiber orientation on the physical properties of composite," Composites, Vol. 5, No. 5, 209-218, 1974.
doi:10.1016/0010-4361(74)90141-4

7. Valeau, A. R., "Eddy current nondestructive testing of graphite Eddy current nondestructive testing of graphite," Mater. Eval., Vol. 48, 230-239, 1990.

8. Owston, C. N., "Eddy current methods for the examination of carbon fiber reinforced epoxy resins," Mater. Eval., Vol. 34, 237-244, 1976.

9. Angelidis, N. E., N. Khemiri, and P. E. Irving, "Experimental and finite element study of the electrical potential technique for damage detection in CFRP laminates," Smart Mater. Struct., Vol. 14, 147-154, A. Tescher, Ed., 2005.
doi:10.1088/0964-1726/14/1/014

10. Theodoulidis, T. P., "Model of ferrite-cored probes for eddy-current non-destructive evaluation," J. Appl. Phys., Vol. 93, 3071-3078, 2003.
doi:10.1063/1.1543634

11. Cacciola, M., G. Megali, D. Pellicanò, S. Calcagno, M. Versaci, and F. C. Morabito, "Modelling and validating Ferrite-core probes for GMR-Eddy current testing in metallic plates," PIERS Online, Vol. 6, No. 3, 237-241, 2010.
doi:10.2529/PIERS090910070900

12. Ponomarev, V. and A. Pogrebniak, "Image enhancement by homomorphic filters," Proc. SPIE, Applications of Digital Image Processing XVIII , Vol. 2564, 153, 1995.

13. Briggs, A., "Review: Carbon fibre-reinforced cement," J. Mater. Sci., Vol. 12, 384-404, 1977.
doi:10.1007/BF00566282

14. Veron, S. N., "A single-aided eddy current method to measure electrical resistivity," Mater. Eval., Vol. 46, 1581-1589, 1988.

15. Moulder, J. C., E. Uzal, and J. H. Rose, "Thickness and conductivity of metallic layers from eddy current measurements," Rev. Sci. Instrum.,, Vol. 63, 3455-3465, 1992.
doi:10.1063/1.1143749

16. Prakash, R., "Non-destructive testing techniques,", New Age Science LTD, United Kingdom, 2009.

17. Cacciola, M., S. Calcagno, G. Megali, F. C. Morabito, D. Pellicanò, and M. Versaci, "FEA design and misfit minimization for in-depth flaw characterization in metallic plates with eddy current nondestructive testing," IEEE Trans. Magn., Vol. 45, No. 3, 1506-1509, 2009.
doi:10.1109/TMAG.2009.2012691

18. Cacciola, M., S. Calcagno, G. Megali, D. Pellicanò, M. Versaci, and F. C. Morabito, "Eddy current modelling in composite materials," PIERS Online, Vol. 5, No. 6, 591-595, 2009.

19. Cacciola, M., S. Calcagno, G. Megali, D. Pellicanò, M. Versaci, and F. C. Morabito, "Numerical simulations on Eddy currents evaluation at high speed in CFRP," Proceedings of the Third Euro Mediterranean Symposium on Advances in Geomaterials and Structures, AGS 2010, Vol. 1, 217-227, 2010.

20. Tsuboi, H. and T. Misaki, "Three dimensional analysis of eddy current distribution by the boundary element method using vector variables," IEEE Trans. Magn., Vol. 26, No. 2, 454-457, 1990.
doi:10.1109/20.106351

21. Weissenburger, D. and U. R. Christensen, "A network mesh method to calculate eddy current on conducting surfaces," IEEE Trans. Magn., Vol. 18, No. 2, 422-425, 1982.
doi:10.1109/TMAG.1982.1061879

22. Pratap, B. and W. F. Weldon, "Eddy currents in anisotropic composites applied to pulsed machinery," IEEE Trans. Magn., Vol. 32, No. 2, 437-444, 1996.
doi:10.1109/20.486530

23. Dogaru, T. and S. T. Smith, "Giant magnetoresistance-based Eddy-current sensor," IEEE Trans. Magn., Vol. 37, No. 5, 3836-3838, 2001.
doi:10.1109/20.952754

24. Gonzales, R. C. and R. E. Woods, Digital Image Processing, Addison Wesley, 1993.

25. Gonzales, R. C. and R. E. Woods, Digital Image Processing Using Matlab, Addison Wesley, 1996.

26. Umbaugh, S. E., Computer Imaging: Digital Image Analysis and Processing, CRC Press, Florida, 2005.