Vol. 25
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-09-09
Rain Attenuation Modeling in the 10-100 GHz Frequency Using DROP Size Distributions for Different Climatic Zones in Tropical India
By
Progress In Electromagnetics Research B, Vol. 25, 211-224, 2010
Abstract
Rain drop size distributions (DSD) are measured with disdrometers at five different climatic locations in the Indian tropical region. The distribution of drop size is assumed to be lognormal to model the rain attenuation in the frequency range of 10-100 GHz. The rain attenuation is estimated assuming single scattering of spherical rain drops. Different attenuation characteristics are observed for different regions due to the dependency of DSD on climatic conditions. A comparison shows that significant differences between ITU-R model and DSD derived values occur at high frequency and at high rain rates for different regions. At frequencies below 30 GHz, the ITU-R model matches well with the DSD generated values up to 30 mm/h rain rate but differ above that. The results will be helpful in understanding the pattern of rain attenuation variation and designing the systems at EHF bands in the tropical region.
Citation
Saurabh Das, Animesh Maitra, and Ashish Kumar Shukla, "Rain Attenuation Modeling in the 10-100 GHz Frequency Using DROP Size Distributions for Different Climatic Zones in Tropical India," Progress In Electromagnetics Research B, Vol. 25, 211-224, 2010.
doi:10.2528/PIERB10072707
References

1. Crane, R. K., Electromagnetic Wave Propagation through Rain, 1st Ed., University of Oklahoma, 1996.

2. Ippolito, L. J., Radio Wave Propagation in Satellite Communications, 1st Ed., Van Nostrand Reinhold Company, 1986.

3. Thurai, M., V. N. Bringi, and A. Rocha, "Specific attenuation and depolarisation in rain from 2-dimensional video disdrometer data," IET Microwaves, Antennas & Propagation, Vol. 1, No. 2, 373-380, 2007.
doi:10.1049/iet-map:20060023        Google Scholar

4. Maitra, A., IEEE Antennas and Wireless Propagation Letters, "Rain attenuation modeling from measurement of drop size distribution in the Indian region," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 180-181, 2004.
doi:10.1109/LAWP.2004.833979        Google Scholar

5. Green, H. E., "Propagation impairment on Ka-band SATCOM links in tropical and equatorial regions," IEEE Antennas and Propagation Magazine, Vol. 46, No. 2, April 2004.        Google Scholar

6. Baldotra, A. K. and I. S. Hudiara, "Rain attenuation statistics over terrestrial microwave link at 19.4 GHz at Amritsar," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1505-1508, June 2004.
doi:10.1109/TAP.2004.829852        Google Scholar

7. Mandeep, J. S. and J. E. Allnutt, "Rain attenuation predictions at ku-band in south east Asia countries," Progress In Electromagnetics Research, Vol. 76, 65-74, 2007.
doi:10.2528/PIER07062605        Google Scholar

8. Ojo, J. S., M. O. Ajewole, and S. K. Sarkar, "Rain rate and rain attenuation prediction for satellite communication in Ku and Ka bands over Nigeria," Progress In Electromagnetics Research B, Vol. 5, 207-223, 2008.
doi:10.2528/PIERB08021201        Google Scholar

9. Marzuki, M., T. Kozu., T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki, "Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial indonesia," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1191-1196, Part 2, Digital Object Identifier: 10.1109/TAP.2009.2015812, 2009.
doi:10.1109/TAP.2009.2015812        Google Scholar

10. Asen, W. and T. Tjelta, "A novel method for predicting site dependent specific rain attenuation of millimeter radio waves," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2987-2999, Part 2, 2003.
doi:10.1109/TAP.2003.818005        Google Scholar

11. Kumar, L. S., Y. H. Lee, and J. T. Ong, "Truncated gamma drop size distribution models for rain attenuation in Singapore," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1325-1335, Digital Object Identifier: 10.1109/TAP.2010.2042027, 2010.
doi:10.1109/TAP.2010.2042027        Google Scholar

12. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yeo, "A gamma distribution of raindrop sizes and its application to Singapore's tropical environment," Microwave and Optical Technology Letters, Vol. 7, No. 5, 253-257, 1994.
doi:10.1002/mop.4650070514        Google Scholar

13. Timothy, K. I., J. T. Ong, and E. B. L. Choo, "Rain drop size distribution using method of moments for terrestrial and satellite communication applications in Singapore," IEEE Transaction on Antennas and Propagation, Vol. 50, No. 10, 1420-1424, 2002.
doi:10.1109/TAP.2002.802091        Google Scholar

14. Gunn, R. and G. D. Kinzer, "The terminal velocity of fall for water droplets in stagnant air," Journal of Meteorology, Vol. 8, 249-253, 1949.        Google Scholar

15. Maitra, A., S. Das, and A. K. Shukla, "Joint statistics of rain rate and event duration for a tropical location in India," Indian Journal of Radio & Space Physics, Vol. 38, No. 6, 353-360, December 2009.        Google Scholar

16. Tokay, A. and D. Short, "Evidence from tropical rain drop spectra of the origin of rain from stratiform versus convective," J. Appl. Meteor, Vol. 35, 355-371, 1996.
doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2        Google Scholar

17. Shan, Y. Y., J. T. Ong, Y. H. Lee, and T. T. Nguyen, "Lognormal model for Singapore raindrop size distribution," Fifth International Conference on Information, Communications and Signal Processing, Bangkok, 2005.        Google Scholar

18. Maitra, A., "Three-parameter raindrop size distribution modelling at a tropical location," Electronics Letters, Vol. 36, No. 10, 906-907, May 2000.
doi:10.1049/el:20000667        Google Scholar

19. Yeo, T. S., P. S. Kooi, M. S. Leong, and L. W. Li, "Tropical raindrop size distribution for the prediction of rain attenuation of microwaves in the 10--40 GHz band," IEEE Transaction on Antennas and Propagation, Vol. 49, No. 1, 80-82, January 2001.
doi:10.1109/8.910533        Google Scholar

20. Liebe, H. J., G. A. Hufford, and T. Manabe, "A model for the complex permittivity of water at frequencies below 1 THz," Internat. J. Infrared and mm Waves, Vol. 12, 659-675, 1991.
doi:10.1007/BF01008897        Google Scholar

21. Bahrami, M. and J. Rashed-Mohassel, "An exact solution of coherent wave propagation in rain medium with realistic raindrop shapes," Progress In Electromagnetics Research, Vol. 79, 107-118, 2008.        Google Scholar

22. Setijadi, E., A. Matsushima, N. Tanaka, and G. Hendrantoro, "Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model," Progress In Electromagnetics Research, Vol. 99, 339-354, 2009.
doi:10.2528/PIER09102609        Google Scholar

23. International Telecommunication Union "Specific attenuation model for rain for use in prediction methods," Recommendation ITU-R, P.838-3, Geneva 2005.        Google Scholar

24. International Telecommunication Union "Characteristics of precipitation for propagation modeling," Recommendation ITU-R, P.837-5, Geneva 2007.        Google Scholar