Vol. 14
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-09-24
A Novel Time-Domain Physical Optics for Computation of Electromagnetic Scattering of Homogeneous Dielectric Objects
By
Progress In Electromagnetics Research M, Vol. 14, 123-134, 2010
Abstract
A novel time-domain physical optics (TDPO) is proposed to determine the transient response of electromagnetic scattering of electrically large homogeneous dielectric targets modeled with triangular facets. Formula of the novel TDPO is derived, in which a time-domain convolution product between the incident plane wave and the time-domain physical-optics (PO) integral is included. The time-domain PO integral is evaluated with a closed-form expression based on a Radon transform interpretation, which makes the novel TDPO highly efficient in speed. The wideband rador cross section (RCS) is conveniently obtained from the transient response with a fast Fourier transform (FFT). Numerical results demonstrate the efficacy of the new method.
Citation
Ying Guan, Shu-Xi Gong, Shuai Zhang, Bao Lu, and Tao Hong, "A Novel Time-Domain Physical Optics for Computation of Electromagnetic Scattering of Homogeneous Dielectric Objects," Progress In Electromagnetics Research M, Vol. 14, 123-134, 2010.
doi:10.2528/PIERM10081605
References

1. Shanker, B., M. Lu, J. Yuan, and E. Michielssen, "Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 1506-1520, May 2009.
doi:10.1109/TAP.2009.2016700

2. Meng, R., Z. Dongming, L. Ying, and H. Jianguo, "Coupled TDIE-PO method for transient scattering from electrically large conducting objects ," Electron. Lett., Vol. 44, No. 4, 258-259, Feb. 2008.
doi:10.1049/el:20083532

3. Zhang, G. H. and M. Y. Xia, "Time domain integral equation approach for analysis of transient response by metallic-dielectric composite bodies," Progress In Electromagnetics Research, Vol. 87, 1-14, 2008.
doi:10.2528/PIER08092803

4. Veruttipong, T. W., "Time domain version of the uniform GTD," IEEE Trans. Antennas Propag., Vol. 38, No. 11, 1757-1764, Nov. 1990.
doi:10.1109/8.102736

5. Johansen, P. M., "Time-domain version of the physical theory of diffraction," IEEE Trans. Antennas Propag., Vol. 47, No. 2, 261-270, Feb. 1999.
doi:10.1109/8.761065

6. Sun, E.-Y. and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. Antennas Propag., Vol. 42, No. 1, 9-15, Jan. 1994.
doi:10.1109/8.272295

7. Yang, L.-X., D.-B. Ge, and B. Wei, "FDTD/TDPO hybrid approach for analysis of the EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206

8. Faghihi, F. and H. Heydari, "A combination of time domain ¯nite element-boundary integral with time domain physical optics for calculation of electromagnetic scattering of 3-D structures," Progress In Electromagnetics Research, Vol. 79, 463-474, 2008.
doi:10.2528/PIER07110206

9. Faghihi, F. and H. Heydari, "Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects," Progress In Electromagnetics Research, Vol. 95, 87-102, 2009.
doi:10.2528/PIER09040407

10. Bölükbas, D. and A. A. Ergin, "A Radon transform interpretation of the physical optics integral," Microw. Opt. Technol. Lett., Vol. 44, No. 3, 284-288, Feb. 2005.
doi:10.1002/mop.20612

11. Serim, H. A. and A. A. Ergin, "Computation of the physical optics integral on NURBS surfaces using a Radon transform interpretation," IEEE Antennas Wireless Propag. Lett., Vol. 7, 70-73, 2008.
doi:10.1109/LAWP.2008.915811

12. Klement, D., J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computation of combined objects," IEEE Trans. Antennas Propag., Vol. 36, No. 2, 228-237, Feb. 1988.
doi:10.1109/8.1100

13. Rius, J. M., M. Ferrando, and L. Jofre, "High-frequency RCS of complex radar targets in real-time," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1308-1319, Sep. 1993.
doi:10.1109/8.247759

14. Zha, F.-T., S.-X. Gong, Y.-X. Xu, Y. Guan, and W. Jiang, "Fast shadowing technique for electrically large targets using z-buffer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 341-349, 2009.
doi:10.1163/156939309787604409

15. Gordon, W. B., "Far-field approximation to the Kirchhoff-Helmholtz representations of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, No. 7, 590-592, Jul. 1975.