1. Federal Communications Commission Report FCC 02-48, 2002.
doi:10.1109/TBME.2006.878058
2. Xie, Y., B. Guo, L. Xu, L. Jian, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, Aug. 2006.
doi:10.1109/TMTT.1984.1132783 Google Scholar
3. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Microwave Theory Tech., Vol. 32, 860-874, Aug. 1984. Google Scholar
4. Joisel, A. and J.-C. Bolomey, "Rapid microwave imaging of living tissues," SPIE Symp. Medical Imag., San Diego, CA, USA, Feb. 12-18, 2000.
doi:10.1109/10.52331 Google Scholar
5. Jofre, L., M. S. Hawley, A. Broquetas, E. de Los Reyes, M. Ferrando, and A. R. Elias-Fuste, "Medical imaging with a microwave tomographic scanner," IEEE Trans. Biomed. Eng., Vol. 37, 303-311, Mar. 1990. Google Scholar
6. Bolomey, J.-C., A. Izadnegahdar, L. Jofre, C. Pichot, G. Peronnet, and M. Solaimani, "Microwave diffraction tomography for biomedical applications," IEEE Trans. Microwave Theory Tech., Vol. 30, 1998-2000, Nov. 1982.
doi:10.1109/TAP.1985.1143603 Google Scholar
7. Pichot, C., L. Jofre, G. Peronnet, and J.-C. Bolomey, "Active microwave imaging of inhomogeneous bodies," IEEE Trans. Antennas Propagat., Vol. 33, 416-423, Apr. 1985. Google Scholar
8. Pan, S. X. and A. C. Kak, "A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered backpropagation," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 31, 1262-1275, Oct. 1983. Google Scholar
9. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "An iterative mutiresolution approach for microwave imaging applications," Microwave and Optical Technology Letters, Vol. 32, No. 5, Mar. 5, 2002.
doi:10.1109/TMI.2008.2008959 Google Scholar
10. Winters, D. W., J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, "Three dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Imag., Vol. 28, No. 7, 969-981, Jul. 2009. Google Scholar
11. Lev-Ari, H. and A. J. Devaney, "The time-reversal technique re-interpreted: Subspace-based signal processing for multi-static target location," 1st IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM'00), 509-513, Cambridge, MA, USA, 2000.
doi:10.1109/TMI.2002.1000262 Google Scholar
12. Miyakawa, M., K. Orikasa, M. Bertero, P. Boccacci, F. Conte, and M. Piana, "Experimental validation of a linear model for data reduction in chirp-pulse microwave CT," IEEE Transactions on Medical Imaging, Vol. 21, No. 4, 385-395, 2002. Google Scholar
13. Miyakawa, M., T. Takahashi, N. Iwata, N. Ishii, and M. Bertero, "Fan beam-type CP-MCT with microstrip dipole array receiving antenna," The 36th European Microwave Conference, 1244-1247, Sep. 10-15, 2006. Google Scholar
14. Williams, T., E. C. Fear, and D. W. Westwick, "Tissue sensing adaptive radar for breast cancer detection: Investigations of reflections from the skin," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2436-2439, 2004. Google Scholar
15. Fear, E. C. and M. A. Stuchly, "Confocal microwave imaging for breast tumor detection: Comparison of immersion liquids," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 250-253, 2001.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied. Google Scholar