Vol. 28
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-02-09
Localized Resonance of Composite Core-Shell Nanospheres, Nanobars and Nanospherical Chains
By
Progress In Electromagnetics Research B, Vol. 28, 183-199, 2011
Abstract
We investigate the localized surface plasmon resonances (LSPR) of a pair of dielectric-core/silver-shell nanospheres, with and without a silver nanobar connecting them, for different values of the permittivity of the dielectric core, using the finite element method. Results show that the structure of a pair of core shells with a nanobar possesses a distinct blue-shifted behavior that can be manipulated from near infrared to visible light. The near field intensity can be enhanced by several orders of magnitude and the working wavelengths depend on the shell thickness, dielectric medium in hollow metallic shell and the diameter of the nanobar. In addition, three or more pairs of nanospherical chain waveguides have also been investigated in our simulations.
Citation
Yuan-Fong Chau, Zheng-Hong Jiang, Huang-Yi Li, Gui-Min Lin, Fong-Lin Wu, and Wei-Hsiang Lin, "Localized Resonance of Composite Core-Shell Nanospheres, Nanobars and Nanospherical Chains," Progress In Electromagnetics Research B, Vol. 28, 183-199, 2011.
doi:10.2528/PIERB10102705
References

1. Wang, F. and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett., Vol. 97, 206806, 2006.
doi:10.1103/PhysRevLett.97.206806        Google Scholar

2. Politano, A., V. Formoso, and G. Chiarello, "Dispersion and damping of gold surface plasmon," Plasmonics, Vol. 3, 165-170, 2008.
doi:10.1007/s11468-008-9070-2        Google Scholar

3. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, 189-193, 2006.
doi:10.1126/science.1114849        Google Scholar

4. El-Sayed, I. H., X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer ," Nano Lett., Vol. 5, 829-834, 2005.
doi:10.1021/nl050074e        Google Scholar

5. Haes, A. J., S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B, Vol. 108, 6961-6968, 2004.
doi:10.1021/jp036261n        Google Scholar

6. Loo, C. A., A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett., Vol. 5, 709-711, 2005.
doi:10.1021/nl050127s        Google Scholar

7. Mirin, N. A., K. Bao, and P. Nordlander, "Fano resonances in plasmonic nanoparticle aggregates," J. Phys. Chem. A, Vol. 113, 4028-4034, 2009.
doi:10.1021/jp810411q        Google Scholar

8. Andrew, A. and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science, Vol. 306, 1002-1005, 2004.
doi:10.1126/science.1102992        Google Scholar

9. Okamoto, K., I. NiKi, A. Scherer, Y. Narukawa, and T. Mukai, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mater., Vol. 3, 601-605, 2004.
doi:10.1038/nmat1198        Google Scholar

10. Politano, A. and G. Chiarello, "Tuning the lifetime of the surface plasmon upon sputtering," Phys. Status Solidi-Rapid Res. Lett., Vol. 3, No. 5, 136-138, 2009.
doi:10.1002/pssr.200903082        Google Scholar

11. Pinchuk, A. and U. Kreibig, "Interface decay channel of particle surface plasmon resonance," New J. Phys., Vol. 5, 151.1-151.15, 2003.        Google Scholar

12. Ishida, H. and A. Liebsh, "Lifetime of surface plasmons of simple metals: Volume versus surface contributions," Phys. Rev. B, Vol. 54, 14127-1996.        Google Scholar

13. Yuan, Z. and S. Gao, "Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model," Surf. Sci., Vol. 602, 460-464, 2008.
doi:10.1016/j.susc.2007.10.040        Google Scholar

14. Nie, S. and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced. Raman scattering," Science, Vol. 275, 1102-1106, 1997.
doi:10.1126/science.275.5303.1102        Google Scholar

15. Sokolov, K., G. Chumanov, and T. Cotton, "Among Ag, Al and Au layers, the emission intensity of YAG: Ce thin-film phosphor by coating a silver," Anal. Chem., Vol. 70, 3898-3905, 1998.
doi:10.1021/ac9712310        Google Scholar

16. Lassiter, J. B., J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett., Vol. 8, 1212-1218, 2008.
doi:10.1021/nl080271o        Google Scholar

17. Chau, Y.-F., H.-H. Yeh, and D. P. Tsai, "Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair ," Appl. Opt., Vol. 47, 5557-5561, 2008.
doi:10.1364/AO.47.005557        Google Scholar

18. Sun, Y. and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science, Vol. 298, 2176-2179, 2002.
doi:10.1126/science.1077229        Google Scholar

19. Nehl, C. L., H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett., Vol. 6, 683-688, 2006.
doi:10.1021/nl052409y        Google Scholar

20. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1005-1014, 2010.
doi:10.1163/156939310791586098        Google Scholar

21. Talley, C. E., J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates," Nano Lett., Vol. 5, 1569-1574, 2005.
doi:10.1021/nl050928v        Google Scholar

22. Sherry, L. J., S.-H. Chang, G. C. Schatz, R. P. V. Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett., Vol. 5, 2034-2038, 2005.
doi:10.1021/nl0515753        Google Scholar

23. Oldenburg, S. J., R. D. Averitt, S. L. Westcoot, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett., Vol. 288, 243-247, 1998.
doi:10.1016/S0009-2614(98)00277-2        Google Scholar

24. Lassiter, J. B., J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Nanoshells dimers and overlapped dimmers," Nano Lett., Vol. 8, 1212-1218, 2008.
doi:10.1021/nl080271o        Google Scholar

25. Jain, P. K. and M. A. El-Sayed, "Scaling of plasmon coupling in nanoshells," Nano Lett., Vol. 7, 2854, 2007.
doi:10.1021/nl071496m        Google Scholar

26. Brandl, D. W., C. Oubre, and P. Nordlander, "Plasmon hybridization in nanoshell dimmers," J. Chem. Phys., Vol. 123, 024701, 2005.
doi:10.1063/1.1949169        Google Scholar

27. Tserkezis, C., G. Gantzounis, and N. Stefanou, "Collective plasmonic modes in ordered assemblies of metallic nanoshells," J. Phys.: Condens. Matter, Vol. 20, 075232, 2008.
doi:10.1088/0953-8984/20/7/075232        Google Scholar

28. Hu, Y., R. C. Fleming, and R. A. Drezek, "Optical properties of gold-silica-gold multilayer nanoshells," Opt. Express, Vol. 16, 19579-19591, 2009.        Google Scholar

29. Averitt, R., D. Sarkar, and N. Halas, "Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth," Phys. Rev. Lett., Vol. 79, 4217-4220, 1997.
doi:10.1103/PhysRevLett.78.4217        Google Scholar

30. Chau, Y.-F., "Surface plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair," Plasmonics,, Vol. 4, 253-2009.        Google Scholar

31. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370        Google Scholar

32. Zhang, R., S. Dods, and P. Catrysse, "FDTD approach for optical metallic material," Laser Focus World, Vol. 68, 2004 (www.laserfocusworld.com).        Google Scholar

33. Veronis, G., R. W. Dutton, and S. Fan, "Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range," J. Appl. Phys., Vol. 97, No. 9, 2005.
doi:10.1063/1.1889248        Google Scholar

34. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Optics, Vol. 22, 4493-4499, 1983.        Google Scholar

35. Ordal, M. A., M. A., R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, "Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Optics, Vol. 24, 1099-1120, 1985.        Google Scholar

36. Gresho, P. M. and R. L. Sani, Incompressible Flow and Finite Element Method, Vol. 1 & 2, John Wiley and Sons, New York, 2000.

37. Monk, P., "Finite Element Methods for Maxwell'S Equations," Clarendon, Oxford, 2003, 85.        Google Scholar

38. Okamoto, T., Near-field Optics and Surface Plasmon Polaritons, 99, S. Kawata (Ed.), Springer, Berlin, 2001.

39. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

40. Jain, P. K. and M. A. El-Sayed, "Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells," Nano Lett., Vol. 7, 2854-2858, 2007.
doi:10.1021/nl071496m        Google Scholar

41. COMSOL Multiphysics 4.1 TM, http://www.comsol.com.

42. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures ," Science, Vol. 302, 419, 2003.
doi:10.1126/science.1089171        Google Scholar

43. Teperik, T. V., V. V. Popov, and F. J. Garcia de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B, Vol. 69, 155402, 2004.
doi:10.1103/PhysRevB.69.155402        Google Scholar

44. Wang, H., D. W. Brandl, P. Nordlander, and N. J. Halas, "Tunable plasmonic nanostructures: From fundamental nanoscale optics to surface-enhanced spectroscopies," Acc. Chem. Res., Vol. 40, 53-62, 2007.
doi:10.1021/ar0401045        Google Scholar

45. Ditlbacher, H., J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett., Vol. 81, 1762-1764, 2002.
doi:10.1063/1.1506018        Google Scholar

46. Maier, S. A., P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater., Vol. 2, 229-232, 2003.
doi:10.1038/nmat852        Google Scholar

47. Cui, X. and D. Erni, "Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling," J. Opt. Soc. Am. A, Vol. 25, 1783-1789, 2008.
doi:10.1364/JOSAA.25.001783        Google Scholar

48. McMahon, J. M., S. K. Gray, and G. C. Schatz, "Calculating nonlocal optical properties of structures with arbitrary shape," Phys. Rev. B, Vol. 82, 035423, 2010.
doi:10.1103/PhysRevB.82.035423        Google Scholar

49. Tserkezis, C., G. Gantzounis, and N. Stefanou, "Collective plasmonic modes in ordered assemblies of metallic nanoshells," J. Phys.: Condens. Matter, Vol. 20, 075232, 2008.
doi:10.1088/0953-8984/20/7/075232        Google Scholar

50. Yannopapas, V., "Non-local optical response of two-dimensional arrays of metallic nanoparticles," J. Phys.: Condens. Matter, Vol. 20, 325211, 2008.
doi:10.1088/0953-8984/20/32/325211        Google Scholar