Vol. 19
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-12-23
A 28-40 GHz Doubly Balanced Monolithic Passive Mixer with a Compact IF Extraction
By
Progress In Electromagnetics Research Letters, Vol. 19, 171-178, 2010
Abstract
A doubly balanced monolithic microwave passive mixer using novel configurations is designed and fabricated through a 0.15 μm GaAs pHEMT process. The configuration of the doubly balanced mixer (DBM) can eliminate the use of two dual baluns for application in the conventional star mixer, as well as make the mixer more compact and simplify IF extraction to obtain wider IF bandwidth up to 15 GHz. From the measured results, the fabricated DBM exhibits wideband performance, superior isolations and high dynamic range.
Citation
Chih-Ming Lin, Yi-Chang Lee, Shih-Han Hung, and Yeong-Her Wang, "A 28-40 GHz Doubly Balanced Monolithic Passive Mixer with a Compact IF Extraction," Progress In Electromagnetics Research Letters, Vol. 19, 171-178, 2010.
doi:10.2528/PIERL10112202
References

1. Maas, S. A., Microwave Mixers, 2 Ed., Artech House, Norwood, MA, 1993.

2. Maas, S. A. and K. W. Chang, "A broadband, planar, doubly balanced monolithic Ka-band diode mixer," IEEE Trans. Microw. Theory and Tech., Vol. 41, No. 12, 2330-2335, Dec. 1993.
doi:10.1109/22.260725

3. Yang, T. Y., W. R. Lien, C. C. Yang, and H. K. Chiou, "A compact V-band star mixer using compensated overlay capacitors in dual baluns," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 7, 537-539, Jul. 2007.
doi:10.1109/LMWC.2007.899321

4. Yeom, K. W. and D. H. Ko, "A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes," IEEE Trans. Microw. Theory and Tech., Vol. 53, No. 7, 2435-2440, Jul. 2005.
doi:10.1109/TMTT.2005.850402

5. Lin, C. H., J. C. Chiu, C. M Lin, Y. A. Lai, and Y. H. Wang, "A variable conversion gain star mixer for Ka-Band applications," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 11, 802-804, Nov. 2007.

6. Kim, S. S., J. H. Lee, and K. W. Yeom, "A novel planar dual balun for doubly balanced star mixer," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 9, 440-442, Sep. 2004.
doi:10.1109/LMWC.2004.832063

7. Chang, C. Y., C. W. Tang, and D. C. Niu, "Ultra-broad-band doubly balanced star mixers using planar Mouw's hybrid junction," IEEE Trans. Microw. Theory and Tech., Vol. 41, No. 6, 1077-1085, Jun. 2001.
doi:10.1109/22.925494

8. Yoon, Y. J., Y. Lu, R. C. Frye, and P. R. Smith, "Modeling of monolithic RF spiral transmission-line balun," IEEE Trans. Microw. Theory and Tech., Vol. 49, No. 2, 393-395, Feb. 2001.
doi:10.1109/22.903105

9. Kuo, C. C., C. L. Kuo, C. J. Kuo, S. A. Maas, and H. Wang, "Novel miniature and broadband millimeter-wave monolithic star mixers," IEEE Trans. Microw. Theory and Tech., Vol. 56, No. 4, 793-802, Apr. 2008.
doi:10.1109/TMTT.2008.919063

10. Lin, C. H., C. M. Lin, Y. A. Lai, and Y. H. Wang, "A 26-38 GHz monolithic doubly balanced mixer," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 9, 623-625, Sep. 2008.
doi:10.1109/LMWC.2008.2002465

11. Lai, Y. A., S. H. Hung, C. N. Chen, and Y. H. Wang, "A millimeter-wave monolithic star mixer with simple if extraction circuit," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2433-2440, 2009.

12. An, D., S. C. Kim, J. D. Park, M. K. Lee, H. C. Park, S. D. Kim, W. J. Kim, and J. K. Rhee, "A novel 94-GHz MHEMT resistive mixer using a micromachined ring coupler," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 467-469, Aug. 2006.
doi:10.1109/LMWC.2006.879482

13. Pozar, D. M., Microwave Engineering, 2 Ed., Wiley, New York, 1998.

14. Lange, J., "Interdigitated stripline quadrature hybrid," IEEE Trans. Microw. Theory and Tech., Vol. 17, 1150-1151, Dec. 1969.
doi:10.1109/TMTT.1969.1127115