1. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001 Google Scholar
2. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701 Google Scholar
3. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350 Google Scholar
4. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation --- overview and recent advances," IEEE Instrum. and Meas. Mag., Vol. 10, 26-38, Apr. 2007.
doi:10.1109/MIM.2007.364985 Google Scholar
5. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.
doi:10.2528/PIER05110801 Google Scholar
6. Benedetti, M., M. Donelli, G. Franceschini, M. Pastorino, and A. Massa, "Effective exploitation of the a-priori information through a microwave imaging procedure based on the SMWfor NDE/NDT applications," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 11, 2584-2592, Nov. 2005.
doi:10.1109/TGRS.2005.856630 Google Scholar
7. Zhang, Z. Q. and Q. H. Liu, "Applications of the BiCGS-FFT method to 3-D induction well logging problems," IEEE Geosci. Remote Sensing, Vol. 41, 856-869, May 2003. Google Scholar
8. Catapano, I., L. Crocco, R. Persico, M. Pieraccini, and F. Soldovieri, "Linear and nonlinear microwave tomography approaches for subsurface prospecting: Validation on real data," IEEE Antennas Wireless Propag. Lett., Vol. 5, 49-53, Dec. 2006.
doi:10.1109/LAWP.2006.870363 Google Scholar
9. Crocco, L., M. D'Urso, and T. Isernia, "The contrast source-extended born model for 2D subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.
doi:10.2528/PIERB09080502 Google Scholar
10. Hofmann, B. and O. Scherzer, "Factors influencing the illposedness of nonlinear problems," Inverse Problems, Vol. 10, 1277-1297, 1994.
doi:10.1088/0266-5611/10/6/007 Google Scholar
11. Qing, A. and L. Jen, "A novel method for microwave imaging of dielectric cylinder in layered media," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 10, 1337-1348, 1997.
doi:10.1163/156939397X00026 Google Scholar
12. Van Den Berg, P. M. and M. van der Horst, "Nonlinear inversion in induction logging using the modified gradient method," Radio Sci., Vol. 30, 1355-1369, 1995.
doi:10.1029/95RS01764 Google Scholar
13. Hettlich, F., "Two methods for solving an inverse conductive scattering problem ," Inverse Problems, Vol. 10, 375-385, 1994.
doi:10.1088/0266-5611/10/2/012 Google Scholar
14. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013 Google Scholar
15. Liu, C.-L., C.-C. Chiu, T.-C. Tu, and M.-F. Tasi, "Electromagnetic transverse electric-wave inverse scattering of an imperfectly conducting cylinder by genetic algorithms," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 7, 1-15, Jun. 2008. Google Scholar
16. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure ," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902 Google Scholar
17. Garnero, L., A. Franchois, J. P. Hugonin, C. Pichot, and N. Joachimowicz, "Microwave imaging-complex permittivity reconstruction-by simulated annealing," IEEE Trans. Microw. Theory Tech., Vol. 39, 1801-1807, 1991.
doi:10.1109/22.97480 Google Scholar
18. Brovko Alexander, V., K. Murphy Ethan, and V. Yakovlev Vadim, "Waveguide microwave imaging: Neural network reconstruction of functional 2-D permittivity profiles," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, Feb. 2009. Google Scholar
19. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propagat., Vol. 52, 771-779, Mar. 2004.
doi:10.1109/TAP.2004.825102 Google Scholar
20. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904 Google Scholar
21. Huang, C.-H., C.-C. Chiu, C.-L. Li, and K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904 Google Scholar
22. Donelli, M., D. Franceschini, P. Rocca, and A. Massa, "Three dimensional microwave imaging problems solved through an e±cient multiscaling particle swarm optimization," IEEE Geoscience and Remote Sensing, Vol. 47, 1467-1481, 2009.
doi:10.1109/TGRS.2008.2005529 Google Scholar
23. Emad Eldin, A. M., E. A. Hashish, and M. I. Hassan, "Inversion of lossy dielectric profiles using particle swarm optimization," Progress In Electromagnetics Research M, Vol. 9, 93-105, 2009.
doi:10.2528/PIERM09072604 Google Scholar
24. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001.
25. Wolpert, D. H. and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evolutionary Comp., Vol. 1, 67-82, 1997.
doi:10.1109/4235.585893 Google Scholar
26. Fulginei, F. R. and A. Salvini, "Comparative analysis between modern heuristics and hybrid algorithms," COMPEL: Int. Journal for Comp. and Mathematics in Electrical and Electronic Engineering , Vol. 26, 259-268, 2007.
doi:10.1108/03321640710727629 Google Scholar
27. Harrignton, R. F., Field Computation by Moments Methods, IEEE Press, Piscataway, NJ, 1993.
28. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, IEEE Service Center, Piscataway, 1995.
doi:10.1109/ICNN.1995.488968 Google Scholar
29. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Journal of Science, Vol. 220, 671-680, 1983.
doi:10.1126/science.220.4598.671 Google Scholar
30. Glover, F., "Tabu search: Part 1," ORSA Journal on Computing, Vol. 1, No. 3, 190-206, 1989.
doi:10.1287/ijoc.1.3.190 Google Scholar
31. Pan, H. and X. Han, "BP network learning algorithm research and application of PSO algorithm," Computer Engineering and Application, Vol. 44, No. 9, 67-69, 2008. Google Scholar
32. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, 117-130, 2005.
doi:10.1088/0266-5611/21/6/S09 Google Scholar
33. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, 556-567, 2007.
doi:10.1109/TAP.2007.891552 Google Scholar
34. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 771-778, 2004. Google Scholar
35. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging ," IEEE Trans. on Microwave Theory Tech., Vol. 51, 1162-1173, 2003.
doi:10.1109/TMTT.2003.809677 Google Scholar
36. Sudhakaran, M. and P. Ajay-D-Vimal Raj, "Integrating genetic algorithms and tabu search for unit commitment problem," International Journal of Engineering, Science and Technology, Vol. 2, 57-69, 2010. Google Scholar