Vol. 17
Latest Volume
All Volumes
PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-03-03
Analysis of a Quadruple Corner-Cut Ridged/Vane-Loaded Circular Waveguide Using Scaled Boundary Finite Element Method
By
Progress In Electromagnetics Research M, Vol. 17, 113-133, 2011
Abstract
This paper presents an extension of the recently-developed efficient semi-analytical method, namely scaled boundary finite element method (SBFEM) to analyze quadruple corner-cut ridged circular waveguide. Owing to its symmetry, only a quarter of its cross-section needs to be considered. The entire computational domain is divided into several sub-domains. Only the boundaries of each sub-domain are discretized with line elements leading to great flexibility in mesh generation, and a variational approach is used to derive the scaled boundary finite element equations. SBFEM solution converges in the finite element sense in the circumferential direction, and more significantly, is analytical in the radial direction. Consequently, singularities around re-entrant corners can be represented exactly and automatically. By introducing the "dynamic stiffness" of waveguide, using the continued fraction solution and introducing auxiliary variables, a generalized eigenvalue equation with respect to cutoff wave number is obtained without introducing an internal mesh. Numerical results illustrate the accuracy and efficiency of the method with very few elements and much less consumed time. Influences of corner-cut ridge dimensions on the cutoff wave numbers of modes are examined in detail. The single mode bandwidth of the waveguide is also discussed. Therefore, these results provide an extension to the existing design data for ridge waveguide and are considered helpful in practical applications.
Citation
Jun Liu, and Gao Lin, "Analysis of a Quadruple Corner-Cut Ridged/Vane-Loaded Circular Waveguide Using Scaled Boundary Finite Element Method," Progress In Electromagnetics Research M, Vol. 17, 113-133, 2011.
doi:10.2528/PIERM10122407
http://www.jpier.org/PIERM/pier.php?paper=10122407
References

1. Cohn, S. B., "Properties of ridge waveguide," Proceedings of the IRE, Vol. 35, 783-788, 1947.
doi:10.1109/JRPROC.1947.226277

2. Hopfer, S., "The design of ridged waveguides," IEEE Trans. Microwave Theory Tech., Vol. 3, No. 10, 20-29, 1955.
doi:10.1109/TMTT.1955.1124972

3. Rong, Y. and K. A. Zak, "Characteristics of generalized rectangular and circular ridge waveguides," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 2, 258-265, 2000.
doi:10.1109/22.821772

4. Tsandoulas, G. N. and G. H. Knittel, "The analysis and design of dualpolarization square-waveguide phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 6, 796-808, 1973.
doi:10.1109/TAP.1973.1140605

5. De Villiers, D. I. L. , P. Meyer and K D Palmer, "Broadband offset quad-ridged waveguide orthomode transducer," Electronics Letters, Vol. 45, No. 1, 60-62, 2009.
doi:10.1049/el:20092887

6. Ding, S., B. Jia, F. Li, and Z. Zhu, "3D simulation of 18-vane 5.8 GHz magnetron," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1925-1930, 2008.
doi:10.1163/156939308787537946

7. Singh, K., P. K. Jain, and B. N. Basu, "Analysis of a coaxial waveguide corrugated with wedge-shaped radial vanes considering azimuthal harmonic effects," Progress In Electromagnetics Research, Vol. 47, 297-312, 2004.
doi:10.2528/PIER04010201

8. Singh, K. , P. K. Jain, and B. N. Basu, "Analysis of a corrugated coaxial waveguide resonator for mode rarefaction in a gyrotron," IEEE Trans. Plasma Science, Vol. 33, 1024-1030, 2005.
doi:10.1109/TPS.2005.848604

9. Barroso, J. J., R. A. Correa, and P. J. de Castro, "Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 9, 1221-1230, 1998.
doi:10.1109/22.709460

10. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 56-64, Jan. 1996.
doi:10.1109/22.481385

11. Agrawal, M., G. Singh, P. K. Jain, and B. N. Basu, "Analysis of tapered vane-loaded structures for broadband gyro-TWTs," IEEE Trans. Plasma Science, Vol. 29, 439-444, 2001.
doi:10.1109/27.928941

12. Qiu, C. R. , Z. B. Ouyang, S. C. Zhang, H. B. Zhang, and J. B. Jin, "Self-consistent nonlinear investigation of an outer-slotted-coaxial waveguide gyrotron traveling-wave amplifier," IEEE Trans. Plasma Science, Vol. 33, No. 3, 1013-1018, 2005.
doi:10.1109/TPS.2005.848600

13. Chen, M. H., G. N. Tsandoulas, and F. G. Willwerth, "Modal characteristics of quadruple-ridged circular and square waveguides," IEEE Trans. Microwave Theory Tech., Vol. 22, No. 8, 801-804, 1974.
doi:10.1109/TMTT.1974.1128341

14. Sun, W. and C. A. Balanis, "Analysis and design of quadruple-ridged waveguides," IEEE Trans. Microwave Theory Tech., Vol. 4, No. 12, 2201-2207, 1994.
doi:10.1109/22.339743

15. Tang, Y. , J. Zhao, and W. Wu, "Analysis of quadruple-ridged square waveguide by multilayer perceptron neural network model," Asia-Pacific Microwave Conference, APMC 2006, 1912-1918, 2006.
doi:10.1109/APMC.2006.4429782

16. Tang, Y., J. Zhao, and W. Wu, "Mode-matching analysis of quadruple-ridged square waveguides," Microwave and Optical Technology Letters, Vol. 47, No. 2, 190-194, 2005.
doi:10.1002/mop.21120

17. Sexson, T., "Quadruply ridged hom,", Tech. Rep., ECOM-018 1-M1 160, Army Electronics Command., US, Mar. 1968.

18. Canatan, F., "Cutoff wavenumbers of ridged circular waveguides via Ritz-Galerkin approach," Electronics Letters, Vol. 25, 1036-1038, 1989.
doi:10.1049/el:19890692

19. Rong, Y., "The bandwidth characteristics of ridged circular waveguide," Microwave and Optical Technology Letters, Vol. 3, 347-350, 1990.
doi:10.1002/mop.4650031006

20. Zheng, Q. , F. Xie, B. Yao, and ect., "Analysis of a ridge waveguide family based on subregion solution of multipole theory," Automation Congress, 1-4, WAC, World, 2008.

21. Skinner, S. J. and G. L. James, "Wide-band orthomode transducers," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 2, 294-300, 1991.
doi:10.1109/22.102973

22. Schiff, B., "Eigenvalues for ridged and other waveguides containing corners of angle 3π/2 or 2π by the finite element method," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 6, 1034-1039, 1991.
doi:10.1109/22.81677

23. Song, C. H. and J. P. Wolf, "The scaled boundary finite-element method --- Alias consistent infinitesimal finite-element cell method --- For elastodynamics," Computer Methods in Applied Mechanics and Engineering, Vol. 147, 329-355, 1997.
doi:10.1016/S0045-7825(97)00021-2

24. Wolf, J. P. and C. M. Song, The Scaled Boundary Finite Element Method, Wiley Press, Chichester, England, 2003.

25. Liu, J., et al., "The scaled boundary finite element method applied to electromagnetic field problems," IOP Conference Series: Materials Science and Engineering, Vol. 10, No. 1, 2245, Syndey, Jul. 2010.

26. Song, C. M., "The scaled boundary finite element method in structural dynamics," International Journal for Numerical Methods in Engineering, Vol. 77, 1139-1171, 2009.
doi:10.1002/nme.2454

27. Deeks, A. J. and J. P. Wolf, "A virtual work derivation of the scaled boundary finite-element method for elastostatics,", Vol. 28, 489-504, 2002.

28. Hu , Z., G. Lin, Y. Wang, J. Liu, "A hamiltonian-based derivation of scaled boundary finite element method for elasticity problems," IOP Conference Series: Materials Science and Engineering, Vol. 10, No. 1, 2213, Syndey, Jul. 2010.