Vol. 21
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-02-24
Transmission Phase Characterizations of Metamaterial Covers for Antenna Application
By
Progress In Electromagnetics Research Letters, Vol. 21, 49-57, 2011
Abstract
Metamaterial covers exhibit inimitable electromagnetic properties which make them popular in antenna engineering. A traditional metamaterial cover has an identical transmission phase for a normally incident plane wave regardless of its polarization state. The purpose of this research is to show the possibility of using a polarization dependent metamaterial cover to change the polarization state of the incident plane wave. Novel polarization-dependent metamaterial (PDMTM) covers, whose transmission phases for two principal polarizations are different, are presented. A full-wave FDTD numerical technique developed by the authors is adopted for the simulations.
Citation
Mehdi Veysi, Manouchehr Kamyab, Jaber Moghaddasi, and Amir Jafargholi, "Transmission Phase Characterizations of Metamaterial Covers for Antenna Application," Progress In Electromagnetics Research Letters, Vol. 21, 49-57, 2011.
doi:10.2528/PIERL10123101
References

1. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1632-1643, June 2006.
doi:10.1109/TAP.2006.875470

2. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters,, Vol. 89, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

3. Xu, H., Z. Zhao, Y. Lv, C. Du, and X. Luo, "Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna," Int. J. Infrared Milli. Waves, Vol. 29, 493-498, 2008.
doi:10.1007/s10762-008-9344-y

4. Huang, C., Z. Zhao, W. Wang, and X. Luo, "Dual band dual polarization directive patch antenna using rectangular metallic grids metamaterial," Int. J. Infrared Milli. Terahz Waves, Vol. 30, 700-708, 2009.
doi:10.1007/s10762-009-9496-4

5. Semichaevsky, A. and A. Akyurtlu, "Homogenization of metamaterial-loaded substrates and superstrates for antennas," Progress In Electromagnetics Research, Vol. 71, 129-147, 2007.
doi:10.2528/PIER07021001

6. Yang, F. and Y. Rahmat-Samii, "A low profile single dipole antenna radiating circularly polarized waves," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 6-3083, 2005.

7. Yang, F. and Y. Rahmat-Samii, "Polarization-dependent electro-magnetic bandgap surfaces: Characterization, designs, and applications," IEEE AP-S Dig3, 339-342, 2003.

8. Veysi, M., M. Kamyab, S. M. Mousavi, and A. Jafargholi, "Wideband miniaturized polarization-dependent HIS incorporating metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 2010.

9. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

10. Iriarte, J. C., I. Ederra, R. Gonzalo, A. Gosh, J. Laurin, C. Caloz, Y. Brand, M. Gavrilovic, and Y. P. de Demers, "EBG superstrate for gain enhancement of a circularly polarized patch antenna," IEEE APS, 2993-2996, 2006.

11. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface," Progress In Electromagnetics Research B, Vol. 22, 23-37, 2010.
doi:10.2528/PIERB10031901

12. Diblanc, M., E. Rodes, E. Amaud, M. Thevenot, T. Monediere, and B. Jecko, "Circularly polarized metallic EBG antenna," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 638-640, 2005.
doi:10.1109/LMWC.2005.856689

13. Arnaud, E., R. Chantalat, M. Koubeissi, C. Menudier, T. Monediere, M. Thevenot, and B. Jecko, "New process of circularly polarized EBG antenna by using meander lines," IET EuCAP, 1-6, 2007.