Vol. 21
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-06
Simplifying the Feeding Network for Multibeam Circular Antenna Arrays by Using Corps
By
Progress In Electromagnetics Research Letters, Vol. 21, 119-128, 2011
Abstract
An innovative way to analyze the design of beam-forming networks (BFN) for scannable multi-beam circular antenna arrays using the CORPS (Coherently Radiating Periodic Structures) concept is introduced. This design of CORPS-BFN considers the optimization of the complex inputs of the feeding network by using the Differential Evolution (DE) method. Simulation results for different configurations of CORPS-BFN for a scannable circular array are presented. The results shown in this paper illustrate certain interesting characteristics in the behavior of the array factor for the scannable circular array. The most significant aspect that is unique to this proposal is the simplification of the feeding network based on CORPS.
Citation
Marco A. Panduro, and Carlos del Rio-Bocio, "Simplifying the Feeding Network for Multibeam Circular Antenna Arrays by Using Corps," Progress In Electromagnetics Research Letters, Vol. 21, 119-128, 2011.
doi:10.2528/PIERL11010205
References

1. Panduro, M. A. and C. del Rio-Bocio, "Design of beam-forming network using CORPS and evolutionary optimization," Int. J. Electron. Commun. (AEU), Vol. 63, 353-365, 2009.
doi:10.1016/j.aeue.2008.02.009

2. Betancourt, D., A. Ibanez, and C. del Rio-Bocio, "A novel methodology to feed phased array antennas," IEEE Trans. Antennas Propagation, Vol. 55, 2489-2494, 2007.
doi:10.1109/TAP.2007.904133

3. Panduro, M. A. and C. del Rio-Bocio, "Design of beam-forming network for scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER08070403

4. Betancourt, D., A. Ibanez, and C. del Rio-Bocio, "Coherently radiating periodic structures (CORPS): A step towards high-resolution radiations systems," IEEE AP-S 2005 Washington, DC, 2005.

5. Feortisov, V. and S. Janaqui, "Generalization of the strategies in differential evolution," Proceedings of the IEEE Conference Evolutionary Computation, 1996.

6. Yang, S., A. Qing, and Y. B. Gan, "Synthesis of low side lobe antenna arrays using the differential evolution algorithm," IEEE Transactions on Antennas and Propagation Conference, 1-22, 2003.

7. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308

8. Kurup, D., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential algorithm," IEEE Trans. Antennas Propagation, Vol. 51, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361

9. Parsopoulos, K. E., D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis, "Vector evaluated differential evolution for multi-objective optimization," IEEE Congress on Evolutionay Computation, 19-23, 2004.

10. Storn, R. and K. Price, "Minimizing the real functions of the ICEC'96 contest by differential evolution," IEEE Congress on Evolutionay Computation, 1996.

11. Balanis, C., Antenna Theory --- Analysis and Design, 2nd Edition, Wiley, New York, 1997.

12. Rahmat-Samii, Y. and E. Michielsen, Electromagnetic Optimization by Genetic Algorithms, Wiley & Sons, New York, 1999.

13. Haupt, R., "Thinned arrays using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 42, 993-999, 1994.
doi:10.1109/8.299602

14. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Massachusetts, 1989.