Vol. 17
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-03-29
Curved Fiber Scattering
By
Progress In Electromagnetics Research M, Vol. 17, 225-236, 2011
Abstract
Extinction and backscattering from thin curved fibers of finite conductivity are computed by solving the Pocklington integro-differential equation using the Moment Method with point matching scheme. For simplicity of interpretation these computations were performed at long wavelengths, in the Drude domain. The effect of the degree of curvature on the cross sections is examined for high and low fiber conductivities, and for two incident geometries: normal and parallel to the plane of the curved fiber. The computations show a narrowing and decreasing cross sections with increased fiber curvature for both low and high conductivities. The normal geometry produces larger cross sections than the parallel case.
Citation
Sharhabeel Alyones Charles W. Bruce , "Curved Fiber Scattering," Progress In Electromagnetics Research M, Vol. 17, 225-236, 2011.
doi:10.2528/PIERM11011005
http://www.jpier.org/PIERM/pier.php?paper=11011005
References

1. Mishchenko, M. I., L. D. Travis, and A. A. lacis, "Scattering, Absorption, and Emission of Light by Small Particles,", Third electronic release, NASA Goddard Institute for Space Studies, New York.
doi:10.1109/TAP.2007.898579

2. Alyones, S. , C. W. Bruce, and A. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a finite thin conducting wire," IEEE Trans. Antennas and Propagation, Vol. 55, No. 6, Jun. 2007.

3. Waterman, P. C., "Scattering, absorption, and extinction by thin fibers," J. Opt. Soc. Am. A, Vol. 22, No. 11, Nov. 2005.
doi:10.1063/1.360324

4. Waterman, P. C. and J. C. Pederson, "Electromagnetic scattering and absorption by finite wires," J. Appl. Phys., Vol. 78, 656-667, 1995.
doi:10.1364/JOSAA.15.000174

5. Waterman, P. C. and J. C. Pederson, "Scattering by finite wires of arbitrary," J. Opt. Soc. Am., Vol. 15, 174-184, 1998.

6. Burke, G. J., Numerical Electromagnetic Code (NEC)-Method of Moment; Part I: Program Description-Theory, Part II: Program Description-Code, Part III: User's Guide, Rep. UCID-18834 Lawrence Livermore Nat. Lab., Livermore, CA, Jan. 1981.

7. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, "Millimeter wavelength investigation of fiberous aerosol absorption and scattering properties," Appl. Opt., Vol. 43, Dec. 20, 2004.

8. Bruce, C. W. and S. Alyones, "Extinction effeciencies for metallic fibers in the infrared," Appl. Opt., Vol. 48, 5095-5098, Sep. 20, 2009.
doi:10.1063/1.360129

9. Jelinek, A. V. and C. W. Bruce, "Extinction spectra of high conductivity fibrous aerosols," J. Appl. Phys., Vol. 78, 2675, 1995.
doi:10.1364/AO.34.002822

10. Gurton, K. P. and C. W. Bruce, "Parametric study of the absorption cross section for a moderately conducting thin cylinder," Appl. Opt., Vol. 34, 2822, 1995..
doi:10.1163/156939311795253948

11. Alyones, S. and C. W. Bruce, "Electromagnetic scattering by finite conducting fiber: Limitation of a previous published code," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 1021-1030, 2011.
doi: --- Either ISSN or Journal title must be supplied.