Vol. 17
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-04-04
Implicit Space Mapping Applied to the Synthesis of Antenna Arrays
By
Progress In Electromagnetics Research M, Vol. 17, 283-295, 2011
Abstract
This paper introduces a novel technique for efficiently combining implicit space mapping (ISM) with method of moments (MoM) for the synthesis of antenna arrays and explores several example applications of the ISM approach. The antenna arrays geometric parameters are extracted to be optimized by ISM, and a fitness function is evaluated by MoM simulations to represent the performance of each candidate design. A coarse-mesh MoM and a fine-mesh MoM solver are used for the coarse and the fine models, respectively. To achieve the parameter extraction, the auxiliary parameter is selected and the approximation between the two models is accomplished by particle swarm optimization (PSO). The results show that the running time of the ISM algorithm is 2~3 times faster than that of other optimization algorithms (e.g. PSO).
Citation
Fu-Wei Wang, Wen-Tao Wang, Shu-Xi Gong, Shuai Zhang, and Yun-Qi Zhang, "Implicit Space Mapping Applied to the Synthesis of Antenna Arrays," Progress In Electromagnetics Research M, Vol. 17, 283-295, 2011.
doi:10.2528/PIERM11021104
References

1. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of Taguchi's optimization method and self-adaptive differential evolution to the synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306

2. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-e±ciency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

3. Zhang, S., S.-X. Gong, and P.-F. Zhang, "A modified PSO for low sidelobe concentric ring arrays synthesis with multiple constraints," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1535-1544, 2009.
doi:10.1163/156939309789476239

4. Wang, W.-T., Y. Liu, S.-X. Gong, Y.-J. Zhang, and X. Wang, "Calculation of antenna mode scattering based on method of moments," Progress In Electromagnetics Research Letters, Vol. 15, 117-126, 2010.
doi:10.2528/PIERL10051704

5. Cui, Z., Y. Han, Q. Xu, and M. Li, "Parallel MoM solution of Jmcfie for scattering by 3-D electrically large dielectric objects," Progress In Electromagnetics Research M, Vol. 12, 217-228, 2010.
doi:10.2528/PIERM10042607

6. Ayestaran, R. G., J. Laviada-Martinez, and F. Las-Heras, "Realistic antenna array synthesis in complex environments using a MOM-SVR approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 97-108, 2009.
doi:10.1163/156939309787604670

7. Isaakidis, S. A. and T. D. Xenos, "Parabolic equation solution solution of tropospheric wave propagation using FEM," Progress In Electromagnetics Research, Vol. 49, 257-271, 2004.
doi:10.2528/PIER04042701

8. Johnson, J. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas," IEEE Trans. Antennas and Propagation, Vol. 47, 1606-1614.
doi:10.1109/8.805906

9. Jin, N. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs ," IEEE Trans. Antennas and Propagation, Vol. 53, 3459-3468, Nov. 2005.
doi:10.1109/TAP.2005.858842

10. Haupt, R. L. and D. W. Aten, "Low sidelobe arrays via dipole rotation," IEEE Trans. Antennas and Propagation, Vol. 57, 1574-1578, May 2009.

11. Caorsi, S., A. Lommi, A. Massa, and M. Pastorino, "Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets," IEEE Trans. Antennas and Propagation, Vol. 52, No. 4, 1116-1121, 2004.
doi:10.1109/TAP.2004.825689

12. Donelli, M., A. Martini, and A. Massa, "A hybrid approach based on PSO and hadamard difference sets for the synthesis of square thinned arrays," IEEE Trans. Antennas and Propagation, Vol. 57, No. 8, 2491-2495, 2009.
doi:10.1109/TAP.2009.2024570

13. Bandler, J. W., Q. S. Cheng, S. A. Dakroury, A. S.Mohamed, M. H. Bakr, K. Madsen, and J. Sondergaard, "Space mapping: The state of the art," IEEE Trans. Microwave Theory Tech., Vol. 52, 337-361, Jan. 2004.
doi:10.1109/TMTT.2003.820904

14. Zhu, J., J. W. Bandler, N. K. Nikolova, and S. Koziel, "Antenna optimization through space mapping," IEEE Trans. Antennas and Propagation, Vol. 55, 651-658, 2007.
doi:10.1109/TAP.2007.891544

15. Mario Fernandez, P., P. Meincke, and A. Rubio Bretones, "A Hybrid genetic-algorithm space-mapping tool for the optimization of antennas," IEEE Trans. Antennas and Propagation, Vol. 55, 777-781, Mar. 2007.

16. Bandler, J. W., Q. S. Cheng, N. K. Nikolova, and M. A. Ismail, "Implicit space mapping optimization exploiting preassigned parameters," IEEE Trans. Microwave Theory Tech., Vol. 52, 378-385, Jan. 2004.
doi:10.1109/TMTT.2003.820892

17. Bandler, J. W., R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers, "Space mapping technique for electromagnetic optimization," IEEE Trans. Microwave Theory Tech., Vol. 42, 2536-2544, 1994.
doi:10.1109/22.339794

18. Bandler, J. W., R. M. Biernacki, S. H. Chen, R. H. Hemmers, and K. Madsen, "Electromagnetic optimization exploiting aggressive space mapping," IEEE Trans. Microwave Theory Tech., Vol. 43, 2874-2882, Dec. 1995.
doi:10.1109/22.475649

19. Bandler, J. W., M. A. Ismail, J. E. Rayas-Sanchez, and Q. J. Zhang, "Neuromodeling of microwave circuits exploiting space mapping technology," IEEE Trans. Microwave Theory Tech., Vol. 47, 2417-2427, Dec. 1999.
doi:10.1109/22.808989

20. Bandler, J. W., R. M. Biernacki, S. H. Chen, and D. Omeragic, "Space mapping optimization of waveguide filters using finite element and mode-matching electromagnetic simulators," Int. J. RF Microwave Computer-Aided Eng., Vol. 9, 54-70, 1999.
doi:10.1002/(SICI)1099-047X(199901)9:1<54::AID-MMCE8>3.0.CO;2-8

21. Bandler, J. W., R. M. Biernacki, S. H. Chen, and Y. F. Huang, "Design optimization of interdigital filters using aggressive space mapping and decomposition," IEEE Trans. Microwave Theory Tech., Vol. 45, 761-769, May 1997.
doi:10.1109/22.575598

22. Bandler, J. W., M. A. Ismail, and J. E. Rayas-Sanchez, "Expanded space mapping EM-based design framework exploiting preassigned parameters," IEEE Trans. Circuits Syst. I, Vol. 49, 1833-1838, Dec. 2002.
doi:10.1109/TCSI.2002.805716

23. Weng, W.-C., F. Yang, and A. Z. Elsherbeni, "Linear antenna array synthesis using Taguchi's Method: A novel optimization technique in electromagnetics," IEEE Trans. Antennas and Propagation, Vol. 55, 723-730, 2007.
doi:10.1109/TAP.2007.891548