Vol. 28
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-03-20
A Matrix Approach for the Evaluation of the Internal Impedance of Multilayered Cylindrical Structures
By
Progress In Electromagnetics Research B, Vol. 28, 351-367, 2011
Abstract
A matrix technique for the computation of the per-unit-length internal impedance of radially inhomogeneous cylindrical structures is presented. The cylindrical structure is conceptually divided into a number of layers, each layer being characterized by its constitutive parameters, conductivity, permeability, and permittivity. Within this general framework, compound conductors, compound capacitors, compound magnetic cores, or any other compound structures resulting from a mix of the above, can be analyzed by using the very same tool. The developed software program, MLCS, which implements the mentioned matrix technique, also permits the evaluation of the electric and magnetic fields intensity at the layers' interfaces. The MLCS program is validated by using several application examples.
Citation
Jose Antonio Marinho Brandao Faria, "A Matrix Approach for the Evaluation of the Internal Impedance of Multilayered Cylindrical Structures," Progress In Electromagnetics Research B, Vol. 28, 351-367, 2011.
doi:10.2528/PIERB11021505
References

1. Matrone, A., S. Ferraiuolo, and L. Martini, "Development of low-losses current leads based on multilayered Bi223/Ag conductors," Il Nuovo Cimento D, Vol. 19, No. 8-9, 1469-1475, 1997.
doi:10.1007/BF03185449        Google Scholar

2. Olsen, S., C. Traeholt, A. Kuhle, O. Tonnesen, M. Daumling, and J. Oestergaard, "Loss and inductance investigations in a 4-layer superconducting prototype cable conductor," IEEE Trans. Appl. Supercond., Vol. 9, No. 2, 833-836, 1999.
doi:10.1109/77.783426        Google Scholar

3. Martini, L., F. Barberis, R. Bert, G. Volpini, L. Bigoni, and F. Curcio, "AFM multilayered Bi-2223 conductors for 13 kA current leads for CERN," Physica C: Superconductivity, Vol. 341-348, Part 4, 2513-2516, 2000.        Google Scholar

4. Tsuda, M., A. Alamgir, Y. Ito, T. Harano, N. Harada, T. Hamajima, M. Ono, and H. Takano, "Influence of current distribution on conductor performance in coaxial multi-layer HTS conductor," IEEE Trans. Appl. Supercond., Vol. 12, No. 1, 1643-1646, 2002.
doi:10.1109/TASC.2002.1018721        Google Scholar

5. Jobava, R., R. Heinrich, D. Pommerenke, W. Kalkner, and A. Gheonjian, "Efficient FDTD simulation of fields in coaxial cables with multi-layered insulation partially formed by dispersive layers of extremely high permittivity," Proc. Direct and Inv. Probl. of Elelectromag. and Accoustic Wave Theory 2002, 91-94, Tbilisi, Georgia, 2002.        Google Scholar

6. Honjo, S., N. Hobara, Y. Takahashi, H. Hashimoto, K. Narita, and T. Yamada, "Efficient finite element analysis of electromagnetic properties in multi-layer superconducting power cables," IEEE Trans. Appl. Supercond., Vol. 13, No. 2, 1894-1897, 2003.
doi:10.1109/TASC.2003.812937        Google Scholar

7. Maher, E., J. Abell, R. Chakalova, Y. Cheung, T. Button, and P. Tixador, "Multi-layer coated conductor cylinders: An alternative approach to superconducting coil fabrication," Supercond. Sci. Technol., Vol. 17, No. 12, 1440-1445, 2004.
doi:10.1088/0953-2048/17/12/015        Google Scholar

8. Tang, X., H. Zhang, H. Su, Y. Shi, and X. Jiang, "Characteristics of thin film inductors using magnetic multilayered films with ceramic intermediate layers ," J. Magnetism and Magn. Materials, Vol. 294, No. 1, 29-52, 2005.        Google Scholar

9. Jiang, Z., N. Amemiya, and M. Nakahata, "Numerical calculation of AC losses in multi-layer superconducting cables composed of coated conductors," Supercond. Sci. Technol., Vol. 21, No. 2, 025013, 2008.
doi:10.1088/0953-2048/21/2/025013        Google Scholar

10. Zhuang, Y., B. Rejaei, H. Schellevis, M. Vroubel, and J. Burghartz, "Magnetic-multilayered interconnects featuring skin effect suppression," IEEE Electron. Dev. Lett., Vol. 29, No. 4, 319-321, 2008.
doi:10.1109/LED.2008.917630        Google Scholar

11. Lesniewska, E. and R. Rajchert, "Application of the field-circuit method for the computation of measurement properties of current transformers with cores consisting of different magnetic materials ," IEEE Trans. Magn., Vol. 46, No. 10, 3778-3783, 2010.
doi:10.1109/TMAG.2010.2050068        Google Scholar

12. Chong, Y., D. Gorlitz, S. Martens, M. Yau, S. Allende, J. Bachmann, and K. Nielsch, "Multilayered core/shell nanowires displaying two distinct magnetic swtching events," Adv. Materials., Vol. 22, No. 22, 2435-2439, 2010.
doi:10.1002/adma.200904321        Google Scholar

13. Tellini, B. and M. Bologna, "Magnetic composite materials and arbitrary B-H relationships," IEEE Trans. Magn., Vol. 46, No. 12, 3967-3972, 2010.
doi:10.1109/TMAG.2010.2079332        Google Scholar

14. Entezar, S., A. Nambar, H. Rahini, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure ," Journal of Electromagnetic Waves and Applications, Vol. 23, 171-182, 2009.
doi:10.1163/156939309787604427        Google Scholar

15. Oraizi, H. and M. Afsahi, "Transmission line modelling and numerical simulation for the analysis and optimum design of metamaterial multilayer structures," Progress In Electromgnetics Research B, Vol. 14, 263-283, 2009.
doi:10.2528/PIERB09022506        Google Scholar

16. Golmohammadi, S., Y. Rouhani, K. Abbasian, and A. Rostami, "Photonic bandgaps in quasiperiodic multilayer structures using Fourier transform of the refractive index profile," Progress In Electromgnetics Research B, Vol. 18, 311-325, 2009.
doi:10.2528/PIERB09091701        Google Scholar

17. Faria, J., Electromagnetic Foundations of Electrical Engineering, Wiley, Chichester, UK, 2008.

18. Ametani, A., "Stratified earth effects on wave propagation: Frequency-dependent parameters," IEEE Trans. Power App. Syst., Vol. 93, No. 5, 1223-1239, 1974.        Google Scholar

19. Deri, A., G. Tevan, A. Semlyen, and A. Castanheira, "The complex ground return plane: A simplified model for homogeneous and multi-layer earth return," IEEE Trans. Power App. Syst., Vol. 100, No. 8, 3686-3693, 1981.
doi:10.1109/TPAS.1981.317011        Google Scholar

20. Neves, M. and J. Faria, "An efficient method for analyzing gradedindex optical fibers," Microwave and Opt. Tech. Letters, Vol. 6, No. 7, 426-431, 1993.
doi:10.1002/mop.4650060712        Google Scholar

21. Neves, M. and J. Faria, "On the discretization process involved in the staircase approximation technique for analyzing radially inhomogeneous optical fibers ," Microwave and Opt. Tech. Letters, Vol. 6, No. 12, 710-715, 1993.
doi:10.1002/mop.4650061213        Google Scholar

22. Simonyi, K., Foundations of Electrical Engineering, Pergamon Press, Oxford, UK, 1963.

23. Watson, G., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, UK, 1992.

24. Vujevic, S., V. Boras, and P. Sarajcev, "A novel algorithm for internal impedance computation of solid and tubular cylindrical conductors ," Int. Rev. Electrical Eng., Vol. 4, No. 6, 1418-1425, 2009.        Google Scholar

25. Faria, J., "Electromagnetic field approach to the modeling of disk-capacitor devices," Microwave and Opt. Tech. Letters, Vol. 48, No. 8, 1467-1472, 2006.
doi:10.1002/mop.21733        Google Scholar

26. Wylie, C., Advanced Engineering Mathematics, Mc-Graw-Hill, New York, USA, 1975.