1. Matrone, A., S. Ferraiuolo, and L. Martini, "Development of low-losses current leads based on multilayered Bi223/Ag conductors," Il Nuovo Cimento D, Vol. 19, No. 8-9, 1469-1475, 1997.
doi:10.1007/BF03185449 Google Scholar
2. Olsen, S., C. Traeholt, A. Kuhle, O. Tonnesen, M. Daumling, and J. Oestergaard, "Loss and inductance investigations in a 4-layer superconducting prototype cable conductor," IEEE Trans. Appl. Supercond., Vol. 9, No. 2, 833-836, 1999.
doi:10.1109/77.783426 Google Scholar
3. Martini, L., F. Barberis, R. Bert, G. Volpini, L. Bigoni, and F. Curcio, "AFM multilayered Bi-2223 conductors for 13 kA current leads for CERN," Physica C: Superconductivity, Vol. 341-348, Part 4, 2513-2516, 2000. Google Scholar
4. Tsuda, M., A. Alamgir, Y. Ito, T. Harano, N. Harada, T. Hamajima, M. Ono, and H. Takano, "Influence of current distribution on conductor performance in coaxial multi-layer HTS conductor," IEEE Trans. Appl. Supercond., Vol. 12, No. 1, 1643-1646, 2002.
doi:10.1109/TASC.2002.1018721 Google Scholar
5. Jobava, R., R. Heinrich, D. Pommerenke, W. Kalkner, and A. Gheonjian, "Efficient FDTD simulation of fields in coaxial cables with multi-layered insulation partially formed by dispersive layers of extremely high permittivity," Proc. Direct and Inv. Probl. of Elelectromag. and Accoustic Wave Theory 2002, 91-94, Tbilisi, Georgia, 2002. Google Scholar
6. Honjo, S., N. Hobara, Y. Takahashi, H. Hashimoto, K. Narita, and T. Yamada, "Efficient finite element analysis of electromagnetic properties in multi-layer superconducting power cables," IEEE Trans. Appl. Supercond., Vol. 13, No. 2, 1894-1897, 2003.
doi:10.1109/TASC.2003.812937 Google Scholar
7. Maher, E., J. Abell, R. Chakalova, Y. Cheung, T. Button, and P. Tixador, "Multi-layer coated conductor cylinders: An alternative approach to superconducting coil fabrication," Supercond. Sci. Technol., Vol. 17, No. 12, 1440-1445, 2004.
doi:10.1088/0953-2048/17/12/015 Google Scholar
8. Tang, X., H. Zhang, H. Su, Y. Shi, and X. Jiang, "Characteristics of thin film inductors using magnetic multilayered films with ceramic intermediate layers ," J. Magnetism and Magn. Materials, Vol. 294, No. 1, 29-52, 2005. Google Scholar
9. Jiang, Z., N. Amemiya, and M. Nakahata, "Numerical calculation of AC losses in multi-layer superconducting cables composed of coated conductors," Supercond. Sci. Technol., Vol. 21, No. 2, 025013, 2008.
doi:10.1088/0953-2048/21/2/025013 Google Scholar
10. Zhuang, Y., B. Rejaei, H. Schellevis, M. Vroubel, and J. Burghartz, "Magnetic-multilayered interconnects featuring skin effect suppression," IEEE Electron. Dev. Lett., Vol. 29, No. 4, 319-321, 2008.
doi:10.1109/LED.2008.917630 Google Scholar
11. Lesniewska, E. and R. Rajchert, "Application of the field-circuit method for the computation of measurement properties of current transformers with cores consisting of different magnetic materials ," IEEE Trans. Magn., Vol. 46, No. 10, 3778-3783, 2010.
doi:10.1109/TMAG.2010.2050068 Google Scholar
12. Chong, Y., D. Gorlitz, S. Martens, M. Yau, S. Allende, J. Bachmann, and K. Nielsch, "Multilayered core/shell nanowires displaying two distinct magnetic swtching events," Adv. Materials., Vol. 22, No. 22, 2435-2439, 2010.
doi:10.1002/adma.200904321 Google Scholar
13. Tellini, B. and M. Bologna, "Magnetic composite materials and arbitrary B-H relationships," IEEE Trans. Magn., Vol. 46, No. 12, 3967-3972, 2010.
doi:10.1109/TMAG.2010.2079332 Google Scholar
14. Entezar, S., A. Nambar, H. Rahini, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure ," Journal of Electromagnetic Waves and Applications, Vol. 23, 171-182, 2009.
doi:10.1163/156939309787604427 Google Scholar
15. Oraizi, H. and M. Afsahi, "Transmission line modelling and numerical simulation for the analysis and optimum design of metamaterial multilayer structures," Progress In Electromgnetics Research B, Vol. 14, 263-283, 2009.
doi:10.2528/PIERB09022506 Google Scholar
16. Golmohammadi, S., Y. Rouhani, K. Abbasian, and A. Rostami, "Photonic bandgaps in quasiperiodic multilayer structures using Fourier transform of the refractive index profile," Progress In Electromgnetics Research B, Vol. 18, 311-325, 2009.
doi:10.2528/PIERB09091701 Google Scholar
17. Faria, J., Electromagnetic Foundations of Electrical Engineering, Wiley, Chichester, UK, 2008.
18. Ametani, A., "Stratified earth effects on wave propagation: Frequency-dependent parameters," IEEE Trans. Power App. Syst., Vol. 93, No. 5, 1223-1239, 1974. Google Scholar
19. Deri, A., G. Tevan, A. Semlyen, and A. Castanheira, "The complex ground return plane: A simplified model for homogeneous and multi-layer earth return," IEEE Trans. Power App. Syst., Vol. 100, No. 8, 3686-3693, 1981.
doi:10.1109/TPAS.1981.317011 Google Scholar
20. Neves, M. and J. Faria, "An efficient method for analyzing gradedindex optical fibers," Microwave and Opt. Tech. Letters, Vol. 6, No. 7, 426-431, 1993.
doi:10.1002/mop.4650060712 Google Scholar
21. Neves, M. and J. Faria, "On the discretization process involved in the staircase approximation technique for analyzing radially inhomogeneous optical fibers ," Microwave and Opt. Tech. Letters, Vol. 6, No. 12, 710-715, 1993.
doi:10.1002/mop.4650061213 Google Scholar
22. Simonyi, K., Foundations of Electrical Engineering, Pergamon Press, Oxford, UK, 1963.
23. Watson, G., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, UK, 1992.
24. Vujevic, S., V. Boras, and P. Sarajcev, "A novel algorithm for internal impedance computation of solid and tubular cylindrical conductors ," Int. Rev. Electrical Eng., Vol. 4, No. 6, 1418-1425, 2009. Google Scholar
25. Faria, J., "Electromagnetic field approach to the modeling of disk-capacitor devices," Microwave and Opt. Tech. Letters, Vol. 48, No. 8, 1467-1472, 2006.
doi:10.1002/mop.21733 Google Scholar
26. Wylie, C., Advanced Engineering Mathematics, Mc-Graw-Hill, New York, USA, 1975.