Vol. 30
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-05-08
Effects of Geometry Configurations on Ambiguity Properties for Bistatic MIMO Radar
By
Progress In Electromagnetics Research B, Vol. 30, 117-133, 2011
Abstract
Bistatic multiple-input multiple-output (MIMO) radar can improve the system performance for obtaining the waveform diversity and larger degrees of freedom (DoF), and effectively counteract the stealthy target for its transmit antennas and receive antennas separated placement. Similarly with the conventional bistatic radar, the geometry configurations of bistatic MIMO radar also play an important role in radar system's performance. Aimed at considering these effects of geometry configurations on the performance for bistatic MIMO radar, in this paper the extended ambiguity function is defined as the coherent cumulation of the matching output of all channels, where the information of the system geometry configuration is included in the received signal model. This new ambiguity function can be used to characterize the local and global resolution properties of the whole radar systems instead of only considering transmitted waveforms in Woodward's. In addition, some examples with the varying system configurations or target parameters are given to illustrate their effects, where the spatial stepped-frequency signal set (a quasi-orthogonal waveform set) is used. The simulation results demonstrate that the more approaching to monostatic MIMO radar case, the better ambiguity properties of time-delay and Doppler for bistatic MIMO radar.
Citation
Hao-Wen Chen, Xiang Li, Jin Yang, Wei Zhou, and Zhaowen Zhuang, "Effects of Geometry Configurations on Ambiguity Properties for Bistatic MIMO Radar," Progress In Electromagnetics Research B, Vol. 30, 117-133, 2011.
doi:10.2528/PIERB11032803
References

1. Li, J. and P. Stoica, "MIMO radar with colocated antennas: Review of some recent work," IEEE Signal Process. Mag., Vol. 24, No. 5, 106-114, 2007.
doi:10.1109/MSP.2007.904812

2. Haimovich, A. M., R. S. Blum, and L. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Process. Mag., Vol. 25, No. 1, 116-129, 2008.
doi:10.1109/MSP.2008.4408448

3. Krairiksh, M., P. Keowsawat, C. Phongcharoenpanich, and S. Kosulvit, "Two-probe excited circular ring antenna for MIMO application," Progress In Electromagnetics Research, Vol. 97, 417-431, 2009.
doi:10.2528/PIER09091607

4. Qu, Y., G. S. Liao, S. Q. Zhu, X. Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
doi:10.2528/PIER08062306

5. Mallahzadeh, A. R., S. Es'haghi, and A. Alipour, "Design of an E-shaped MIMO antenna using IWO algorithm for wireless application at 5.8 GHz," Progress In Electromagnetics Research, Vol. 90, 187-203, 2009.
doi:10.2528/PIER08122704

6. Li, J. and P. Stoica, MIMO Radar Signal Processing, Li-J., Wiley Interscience, 2008.
doi:10.1002/9780470391488

7. Fishler, E., A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "MIMO radar: An idea whose time has come," Proc. IEEE Radar Conf., 71-78, 2004.

8. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high snr scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803

9. Fishler, E., A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "Performance of MIMO radar systems: Advantages of angular diversity," Proc. 38th Asilomar Conf. Signals, Syst. Comput., Vol. 1, 305-309, 2004.

10. Huang, Y., P. V. Brennan, D. Patrick, I. Weller, P. Roberts, and K. Hughes, "FMCW based MIMO imaging radar for maritime navigation," Progress In Electromagnetics Research, Vol. 115, 327-342, 2011.

11. Fishler, E., A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "Spatial diversity in radarsmodels and detection performance," IEEE Trans. Signal Processing, Vol. 54, 823-838, 2006.
doi:10.1109/TSP.2005.862813

12. Bliss, D. W. and K. W. Forsythe, "Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution," Proc. 37th Asilomar Conf. Signals, Syst. Comput., Vol. 1, 54-59, 2003.

13. Chou, H.-T., H.-C. Cheng, H.-T. Hsu, and L.-R. Kuo, "Investigations of isolation improvement techniques for multiple input multiple output (MIMO) WLAN portable terminal applications ," Progress In Electromagnetics Research, Vol. 85, 349-366, 2008.
doi:10.2528/PIER08090905

14. Forsythe, K., D. Bliss, and G. Fawcett, "Multiple-input multiple-output (MIMO) radar: Performance issues," Proc. 38th Asilomar Conf. Signals, Syst. Comput., Vol. 1, 310-315, 2004.

15. Fuhrmann, D. R. and G. S. Antonio, "Transmit beamforming for MIMO radar systems using partial signal correlation," Proc. 38th Asilomar Conf. Signals, Syst. Comput., 295-299, 2004.

16. Bencheikh, M. L. and Y. Wang, "Combined ESPRIT-Rootmusic for DOA-DOD estimation in polarimetric bistatic MIMO radar," Progress In Electromagnetics Research Letters, Vol. 22, 109-117, 2011.

17. Bekkerman, I. and J. Tabrikian, "Target detection and localization using MIMO radars and sonars," IEEE Trans. Signal Processing, Vol. 54, 3873-3883, 2006.
doi:10.1109/TSP.2006.879267

18. Robey, F. C., S. Coutts, D. Weikle, J. C. McHarg, and K. Cuomo, "MIMO radar theory and exprimental results," Proc. 38th Asilomar Conf. Signals, Syst. Comput., Vol. 1, 300-304, 2004.

19. Abouda, A. A., H. M. El-Sallabi, and S. G. Haggman, "Effect of antenna array geometry and ULA azimuthal orientation on MIMO Channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.2528/PIER06050801

20. Jin, M., G. Liao, and J. Li, "Joint DOD and DOA estimation for bistatic MIMO radar," Signal Processing , Vol. 89 , 244-251, 2009.
doi:10.1016/j.sigpro.2008.08.003

21. Yan, H., J. Li, and G. Liao, "Multi-target identification and localization using bistatic MIMO radar systems," EURASIP J. Adv. Signal Processing, 2008.

22. Bencheikh, M. L., Y. D. Wang, and H. Y. He, "Polynomial root ¯nding technique for joint DOA DOD estimationin bistatic MIMO radar," Signal Processing, Vol. 90, 2723-2730, 2010.
doi:10.1016/j.sigpro.2010.03.023

23. Chen, J. L., H. Gu, and W. M. Su, "A new method for joint DOD and DOA estimation in bistatic MIMO radar," Signal Processing, Vol. 90, 714-718, 2010.
doi:10.1016/j.sigpro.2009.08.003

24. Woodward, P., Probability and Information Theory, with Applications to Radar, 1957.

25. Rendas, M. J. D. and J. M. F. Moura, "Ambiguity in radar and sonar," IEEE Trans. Signal Processing, Vol. 46, No. 2, 294-305, 1998.
doi:10.1109/78.655416

26. Urkowitz, H., C. Hauer, and J. Koval, "Generalized resolution in radar systems," Proc. IRE, Vol. 50, 2093-2105, Oct. 1962.
doi:10.1109/JRPROC.1962.288247

27. Tsao, T., M. Slamani, P. Varahney, D. Weiner, H. Schwarzlander, and S. Borer, "Ambiguity function for a bistatic radar," IEEE Trans. Aerospace Electron. Syst., Vol. 33, No. 3, 1041-1051, 1997.
doi:10.1109/7.599331

28. Antonio, G. S., D. R. Fuhrmann, and F. C. Robey, "MIMO radar ambiguity functions," IEEE J. Sel. Topics Signal Processing, Vol. 1, No. 1, 167-177, 2007.
doi:10.1109/JSTSP.2007.897058

29. Yang, C. C. and P. P. Vaidyanathan, "MIMO radar ambiguity properties and optimization using frequency-hopping waveforms," IEEE Trans. Signal Processing, Vol. 56, No. 12, 5926-5936, 2008.
doi:10.1109/TSP.2008.929658

30. Willis, N. J., Bistatic Radar, SciTech Publishing Inc., 2005.

31. Hawkes, M. and A. Nehorai, "Effects of sensor placement on acoustic vector-sensor array performance," IEEE J. Oceanic Eng., Vol. 24, 33-40, 1999.
doi:10.1109/48.740154

32. Baysal, U. and L. Moses, "On the geometry of isotropic arrays," IEEE Trans. Signal Processing, Vol. 51, 1469-1478, 2003.
doi:10.1109/TSP.2003.811227