1. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett., Vol. 96, 113002, 2006.
doi:10.1103/PhysRevLett.96.113002 Google Scholar
2. Kuhn, S., U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle," Phys. Rev. Lett., Vol. 97, 017402, 2006.
doi:10.1103/PhysRevLett.97.017402 Google Scholar
3. Colas des Francs, G., A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, "Fluorescence relaxation in the near-field of a mesoscopic metallic particle: Distance dependence and role of plasmon modes," Opt. Express, Vol. 16, 17654, 2008.
doi:10.1364/OE.16.017654 Google Scholar
4. Ming, T., L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, "Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods," Nano Lett., Vol. 9, No. 11, 3896-3903, 2009.
doi:10.1021/nl902095q Google Scholar
5. Fu, Y., J. Zhang, and J. R. Lakowicz, "Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle," J. Fluoresc., Vol. 17, 811-816, 2007.
doi:10.1007/s10895-007-0259-0 Google Scholar
6. Gerber, S., F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner , "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B, Vol. 75, 073404, 2007.
doi:10.1103/PhysRevB.75.073404 Google Scholar
7. Bharadwaj, P. and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express, Vol. 15, 14266-14274, 2007.
doi:10.1364/OE.15.014266 Google Scholar
8. Aslan, K., M. Wu, J. R. Lakowicz, and C. D. Geddes, "Metal enhanced fluorescence solution-based sensing platform 2: Fluorescent core-shell Ag@SiO2 nanoballs," J. Fluoresc., Vol. 17, 127-131, 2007.
doi:10.1007/s10895-007-0164-6 Google Scholar
9. Tovmachenko, O. G., C. Graf, D. J. Van Den Heuvel, A. Van Blaaderen, and H. C. Gerritsen, "Fluorescence enhancement by metal-core/silica-shell nanoparticles," Adv. Mater., Vol. 18, 91-95, 2006.
doi:10.1002/adma.200500451 Google Scholar
10. Liaw, J. W., C. L. Liu, W. M. Tu, C. S. Sun, and M. K. Kuo, "Average enhancement factor of molecules-doped coreshell (Ag@SiO2) on fluorescence," Opt. Express, Vol. 18, No. 12, 12788-12797, 2010.
doi:10.1364/OE.18.012788 Google Scholar
11. Tam, F., G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic enhancement of molecular fluorescence," Nano Lett., Vol. 7, 496-501, 2007.
doi:10.1021/nl062901x Google Scholar
12. Ringler, M., A. Schwemer, M. Wunderlich, A. Nichtl, K. Kurzinger, T. A. Klar, and J. Feldmann, "Shaping emission spectra of °uorescent molecules with single plasmonic nanoresonators," Phys. Rev. Lett., Vol. 100, 203002, 2008.
doi:10.1103/PhysRevLett.100.203002 Google Scholar
13. Chowdhury, M. H., S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, "Computational study of fluorescence scattering by silver nanoparticles," J. Opt. Soc. Am. B, Vol. 24, 2259-2267, 2007.
doi:10.1364/JOSAB.24.002259 Google Scholar
14. Farahani, J. N., D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning antenna: A tunable superemitter," Phys. Rev. Lett., Vol. 95, 017402, 2005.
doi:10.1103/PhysRevLett.95.017402 Google Scholar
15. Mertens, H., J. S. Biteen, H. A. Atwater, and A. Polman, "Polarization-selective plasmon-enhanced silicon quantum-dot luminescence," Nano Lett., Vol. 6, 2622-2625, 2006.
doi:10.1021/nl061494m Google Scholar
16. Dulkeith, E., A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. Van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects," Phys. Rev. Lett., Vol. 89, 203002, 2002.
doi:10.1103/PhysRevLett.89.203002 Google Scholar
17. Eustis, S. and M. A. El-Sayed, "Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum ," J. Appl. Phys., Vol. 100, 044324, 2006.
doi:10.1063/1.2244520 Google Scholar
18. Ni, W., X. Kou, Z. Yang, and J. Wang, "Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods," ACS Nano, Vol. 2, 677-686, 2008.
doi:10.1021/nn7003603 Google Scholar
19. Chang, W.-S., J. W. Ha, L. S. Slaughter, and S. Link, "Plasmonic nanorod absorbers as orientation sensors," Proc. Natl. Acad. Sci. USA, Vol. 107, 2781-2786, 2010.
doi:10.1073/pnas.0910127107 Google Scholar
20. Kou, X., W. Ni, C.-K. Tsung, K. Chan, H.-Q. Lin, G. D. Stucky, and J. Wang, "Growth of gold bipyramids with improved yield and their curvature-directed oxidation," Small, Vol. 3, No. 12, 2103-2113, 2007.
doi:10.1002/smll.200700379 Google Scholar
21. Klimov, V. V., M. Ducloy, and V. S. Letokhov, "Spontaneous emission of an atom placed near a prolate nanospheroid," Eur. Phys. J. D, Vol. 20, 133-148, 2002.
doi:10.1140/epjd/e2002-00107-2 Google Scholar
22. Mohammadi, A., V. Sandoghdar, and M. Agio, "Gold nanorods and nanospheroids for enhancing spontaneous emission," New J. Phys., Vol. 10, 105015, 2008.
doi:10.1088/1367-2630/10/10/105015 Google Scholar
23. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonance of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865 Google Scholar
24. Hartling, T., P. Reichenbach, and L. M. Eng, "Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle," Opt. Express, Vol. 5, 12806-12817, 2007.
doi:10.1364/OE.15.012806 Google Scholar
25. Liaw, J. W., J. H. Chen, C. S. Chen, and M. K. Kuo, "Purcell effect of nanoshell dimer on single molecule's fluorescence," Opt. Express, Vol. 17, No. 16, 13532-13540, 2009.
doi:10.1364/OE.17.013532 Google Scholar
26. Liaw, J. W., C. S. Chen, and J. H. Chen, "Enhancement or quenching effect of metallic nanodimer on spontaneous emission," J. Quant. Spectrosc. Radiat. Transfer, Vol. 111, 454-465, 2010.
doi:10.1016/j.jqsrt.2009.09.009 Google Scholar
27. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech. House, Boston, 1991.
28. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar
29. Lakowicz, J. R., "Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission," Anal. Biochem., Vol. 337, 171-194, 2005.
doi:10.1016/j.ab.2004.11.026 Google Scholar