1. Plass, G. N. and G. W. Kattawar, "Monte Carlo calculations of light scattering from clouds," Appl. Opt., Vol. 7, 415-419, 1968.
doi:10.1364/AO.7.000415 Google Scholar
2. Wang, L. H., H., S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, Vol. 47, 131-146, 1995.
doi:10.1016/0169-2607(95)01640-F Google Scholar
3. Wang, L. H., S. L. Jacques, and L. Q. Zheng, "CONV --- Convolution for responses to a finite diameter photon beam incident on multilayered tissues," Computer Methods and Programs in Biomedicine, Vol. 54, 141-150, 1997.
doi:10.1016/S0169-2607(97)00021-7 Google Scholar
4. Balbas, E. M. and P. J. French, "Shape based Monte Carlo code for light transport in complex heterogeneous tissues," Opt. Express, Vol. 15, 14086-14098, 2007.
doi:10.1364/OE.15.014086 Google Scholar
5. Kienle, A., L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt., Vol. 35, 2304-2314, 1996.
doi:10.1364/AO.35.002304 Google Scholar
6. Prahl, S. A., M. Keijzer, S. L. Jacques, and A. J.Welch, "A Monte Carlo model of light propagation in tissue," Proc. SPIE, 102-111, 1989. Google Scholar
7. Moumini, N. and C. Baravian, "Incoherent light transport in anisotropic media: Form factor influence for oriented prolate ellipsoids," J. Quant. Spectrosc. Radiat. Transfer, Vol. 110, 1545-1565, 2009.
doi:10.1016/j.jqsrt.2009.01.021 Google Scholar
8. Berdnik, V. and V. Loiko, "Radiative transfer in a layer with oriented spheroidal particles," J. Quant. Spectrosc. Radiat. Transfer, Vol. 93, 369-382, 1999.
doi:10.1016/S0022-4073(99)00025-4 Google Scholar
9. Chang, P. C. Y., J. G. Walker, E. Jakeman, and K. I. Hopcraft, "Polarization properties of light multiply scattered by nonspherical Rayleigh particles," Waves Random Media, Vol. 9, 415-426, 1999.
doi:10.1088/0959-7174/9/3/309 Google Scholar
10. Bai, L., S. Q. Tang, Z. S. Wu, P. H. Xie, and S. M. Wang, "Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band," Acta Physica Sinica, Vol. 59, 1749-1755, 2010. Google Scholar
11. Bai, L., Z. S. Wu, S. Q. Tang, M. Li, P. H. Xie, and S. M. Wang, "Study on phase function in Monte Carlo transmission characteristics of poly-disperse aerosol," Optical Engineering, Vol. 50, 016002-1-8, 2011.
doi:10.1117/1.3530109 Google Scholar
12. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic, New York, 1978.
13. Henyey, L. C. and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J., Vol. 93, 70-83, 1941.
doi:10.1086/144246 Google Scholar
14. Toublanc, D., "Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations ," Appl. Opt., Vol. 35, 3270-3274, 1996.
doi:10.1364/AO.35.003270 Google Scholar
15. Berrocal, E., D. Y. Churmakov, V. P. Romanov, M. C. Jermy, and I. V. Meglinski, "Crossed source detector geometry for novel spray diagnostic: Monte Carlo simulation and analytical results," Appl. Opt., Vol. 44, 2519-2529, 2005.
doi:10.1364/AO.44.002519 Google Scholar
16. Berrocal, E. and I. V. Meglinski, "New model for light propagation in highly inhomogeneous poly disperse turbid media with applications in sprays diagnostics," Opt. Express, Vol. 13, 9181-9195, 2005.
doi:10.1364/OPEX.13.009181 Google Scholar
17. Berrocal, E., D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, "Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution ," Opt. Express, Vol. 15, 10649-10665, 2007.
doi:10.1364/OE.15.010649 Google Scholar
18. Meglinski, I. V., V. L. Kuzmin, D. Y. Churmakov, and D. A. Greenhalgh, "Monte Carlo simulation of coherent effects in multiple scattering," Proc. R. Soc. A, Vol. 461, 43-53, 2005.
doi:10.1098/rspa.2004.1369 Google Scholar
19. Blaunstein, N., "Theoretical aspects of wave propagation in random media based on quanty and statistical field theory," Progress In Electromagnetics Research, Vol. 47, 135-191, 2004.
doi:10.2528/PIER03111702 Google Scholar
20. Tateiba, M. and Z. Q. Meng, "Wave scattering from conducting bodies embedded in random media --- Theory and numerical results," Progress In Electromagnetics Research, Vol. 14, 317-361, 1996. Google Scholar
21. Barabanenkov, Y. N., L. M. Zurk, and M. Y. Barabanenkov, "Single scattering and diffusion approximations for modified radiative transfer theory of wave multiple scattering in dense media near resonance," Progress In Electromagnetics Research, Vol. 15, 27-61, 1997.
doi:10.2528/PIER95102300 Google Scholar
22. Zhang, Y. J., A. Bauer, and E. P. Li, "A novel coupled T-matrix and microwave network approach for multiple scattering from parallel semicircular channels with eccentric cylindrical inclusions," Progress In Electromagnetics Research, Vol. 53, 109-133, 2005.
doi:10.2528/PIER04083102 Google Scholar
23. Zhang, Y. J. and E. P. Li, "Fast multipole accelerated scattering matrix method for multiple scattering of a large number of cylinders," Progress In Electromagnetics Research, Vol. 72, 105-126, 2007.
doi:10.2528/PIER07030503 Google Scholar
24. Setijadi, E., A. Matsushima, N. Tanaka, and G. Hendrantoro, "Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model," Progress In Electromagnetics Research, Vol. 99, 339-354, 2009.
doi:10.2528/PIER09102609 Google Scholar
25. Wang, L., J. A. Kong, K. H. Ding, T. L. Toan, F. R. Baillarin, and N. Floury, "Electromagetic scattering model for rice canopy based on Monte Carlo simulation," Progress In Electromagnetics Research, Vol. 52, 153-171, 2005.
doi:10.2528/PIER04080601 Google Scholar
26. Gao, D. and L. Gao, "Tunable lateral shift through nonlinear composites of nonspherical particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.
doi:10.2528/PIER09102404 Google Scholar
27. Setijadi, E., A. Matsushima, N. Tanaka, and G. Hendrantoro, "Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model," Progress In Electromagnetics Research, Vol. 99, 339-354, 2009.
doi:10.2528/PIER09102609 Google Scholar
28. Wu, Z. S. and Y. P. Wang, "Study of scattering of plane wave though discrete random medium by direct analogue and statistical estimation," Acta Physica Sinica, Vol. 37, 698-704, 1988 (in Chinese). Google Scholar
29. Asano, S. and G. Yamamoto, "Light scattering by a spheroidal particle," Appl. Opt., Vol. 14, 29-49, 1975. Google Scholar
30. Asano, S., "Light scattering properties of spheroidal particles," Appl. Opt., Vol. 18, 712-723, 1979.
doi:10.1364/AO.18.000712 Google Scholar
31. Moffatt, D. L. and E. M. Kennaugh, "The axial echo area of a perfectly conducting prolate spheroid," IEEE Trans. Antennas Propagat., Vol. 13, 401-409, 1965.
doi:10.1109/TAP.1965.1138438 Google Scholar
32. Sinha, B. P. and R. H. MacPhie, "Electromagnetic scattering by prolate spheroids for plane waves with arbitrary polarization and angle of incidence," Radio Sci., Vol. 12, 171-184, 1977.
doi:10.1029/RS012i002p00171 Google Scholar
33. Mishchenko, M. I., "Light scattering by randomly oriented axially symmetric particles," J. Opt. Soc. Am. A, Vol. 8, 871-882, 1991.
doi:10.1364/JOSAA.8.000871 Google Scholar
34. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic, San Diego, Calif., 2000.
35. Li, L. W., T. S. Yeo, and M.-S. Leong, "Bistatic scattering and backscattering of electromagnetic waves by conducting and coated dielectric spheroids: A new analysis using mathematica package," Progress In Electromagnetics Research, Vol. 31, 225-245, 2001.
doi:10.2528/PIER00071706 Google Scholar
36. Li, L. W., M. S. Yeo, and M. S. Leong, "EM fields inside a prolate spheroid due to a thin circular loop: A higher-order perturbation approach," Progress In Electromagnetics Research, Vol. 34, 219-252, 2001.
doi:10.2528/PIER01062201 Google Scholar
37. Li, L. W., X. K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory, Wiley, New York, 2002.
doi:10.1002/0471221570
38. Han, Y. P. and Z. S. Wu, "Scattering of a spheroidal particle illuminated by a Gaussian beam," Appl. Opt., Vol. 40, 2501-2509, 2001.
doi:10.1364/AO.40.002501 Google Scholar
39. Kotsis, A. D. and J. A. Roumeliotis, "Electromagnetic scattering by a metallic spheroid using shape perturbation method," Progress In Electromagnetics Research, Vol. 67, 113-134, 2007.
doi:10.2528/PIER06080202 Google Scholar
40. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491 Google Scholar
41. Waterman, P. C., "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D, Vol. 3, 825-839, 1971.
doi:10.1103/PhysRevD.3.825 Google Scholar
42. Mishchenko, M. I., "T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database," J. Quant. Spectrosc. Radiat. Transfer, Vol. 88, 357-406, 2004. Google Scholar
43. Mishchenko, M. I., G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, "Comprehensive T-matrix reference database: A 2004{2006 update," J. Quant. Spectrosc. Radiat. Transfer, Vol. 106, 304-324, 2007.
doi:10.1016/j.jqsrt.2007.01.022 Google Scholar
44. Mishchenko, M. I., G. Videen, N. G. Khlebtsov, T. Wriedt, and N. T. Zakharova, "Comprehensive T-matrix reference database: A 2006{2007 update," J. Quant. Spectrosc. Radiat. Transfer, Vol. 109, 1447-1460, 2008.
doi:10.1016/j.jqsrt.2008.01.001 Google Scholar
45. Mishchenko, M. I., "Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transfer, Vol. 60, 309-324, 1998.
doi:10.1016/S0022-4073(98)00008-9 Google Scholar
46. Doicu, A. and T. Wriedt, "Null-field method with discrete sources to electromagnetic scattering from composite objects," Opt. Commun., Vol. 190, 13-17, 2001.
doi:10.1016/S0030-4018(01)01060-4 Google Scholar
47. Doicu, A., "Null-field method to electromagnetic scattering from uniaxial anisotropic particles," Opt. Commun., Vol. 218, 11-17, 2003.
doi:10.1016/S0030-4018(03)01164-7 Google Scholar
48. Chew, W. C., Y. M. Wang, and L. Gürel, "Recursive algorithm for wave-scattering using windowed addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 11, 1537-1560, 1992.
doi:10.1163/156939392X00058 Google Scholar
49. Chew, W. C., "Recurrence relations for three-dimensional scalar addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1-6, 133-142, 1992.
doi:10.1163/156939392X01075 Google Scholar
50. Chew, W. C. and Y. M. Wang, "Efficient ways to compute the vector addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 5, 651-665, 1993.
doi:10.1163/156939393X00787 Google Scholar
51. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, "T-matrix computations of light scattering by nonspherical particles: A review," J. Quant. Spectrosc. Radiat. Transfer, Vol. 55, 535-575, 1996.
doi:10.1016/0022-4073(96)00002-7 Google Scholar
52. Bates, D. E. and J. N. Porter, "AO3D: A Monte Carlo code for modeling of environmental light propagation," J. Quant. Spectrosc. Radiat. Transfer, Vol. 109, 1802-1824, 2008.
doi:10.1016/j.jqsrt.2008.01.017 Google Scholar
53. Levoni, C., M. Cervino, R. Guzzi, and F. Torricella, "Atmospheric aerosol optical properties: A database of radiative characteristics for di®erent components and classes," Appl. Opt., Vol. 36, 8031-8041, 1997.
doi:10.1364/AO.36.008031 Google Scholar