1. Rzesnicki, T., B. Piosczyk, S. Kern, et al. "2.2-MW record power of the 170-GHz European preprototype coaxial-cavity gyrotron for ITER," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1141-1149, Jun. 2010.
doi:10.1109/TPS.2010.2040842 Google Scholar
2. Zapevalov, V. E., V. I. Khizhnyak, M. A. Moiseev, A. B. Pavelyev, and N. I. Zavolsky , "Advantages of coaxial cavity gyrotrons," Proceedings of the 12th Joint Workshop `Electron Cyclotron Emission and Electron Cyclotron Heating' , 423-432, May 2002. Google Scholar
3. Iatrou, C. T., S. Kern, and A. B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons," IEEE. Trans. Microwave Theory Tech., Vol. 44, 56-64, Jan. 1996.
doi:10.1109/22.481385 Google Scholar
4. Iatrou, C. T., "Mode selective properties of coaxial gyrotron resonators," IEEE Trans. Plasma Sci., Vol. 24, No. 3, 596-605, Jun. 1996.
doi:10.1109/27.532942 Google Scholar
5. Avramides, K., C. Iatrou, and J. Vomvoridis, "Design considerations for powerful continuous-wave second-cyclotron-harmonic coaxial-cavity gyrotrons," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 917-928, 2004.
doi:10.1109/TPS.2004.828781 Google Scholar
6. Dumbrajs, O., K. A. Avramides, and B. Piosczyk, "Mode competition in the 170 GHz coaxial gyrotron cavity for ITER," Proc. of Joint 32nd Int. Conf. IRMMW-THz., 48-49, 2007. Google Scholar
7. Barroso, J. J., R. A. Correa, and P. J. Castro, "Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment," IEEE. Trans. Microwave Theory Tech., Vol. 46, No. 9, 1221-1230, Sep. 1998.
doi:10.1109/22.709460 Google Scholar
8. Singh, K.P. Jain, and B. Basu, "Analysis of a coaxial waveguide corrugated with wedge-shaped radial vanes considering azimuthal harmonic effects," Progress In Electromagnetics Research, Vol. 47, 297-312, 2004.
doi:10.2528/PIER04010201 Google Scholar
9. Piosczyk, B., G. Dammertz, O. Dumbrajs, et al. "A 2MW, 170 GHz coaxial cavity gyrotron | Experimental verification of the design of main components," Journal of Physics: Conference Series, Vol. 25, 24-32, 2005.
doi:10.1088/1742-6596/25/1/004 Google Scholar
10. Grundiev, A., J.-Y. Raguin, and K. Schunemann, "Numerical study of mode competition in coaxial gyrotrons with corrugated insert," International Journal of Infrared and Millimeter Waves, Vol. 24, No. 2, Feb.-2003. Google Scholar
11. Gandel, Y. V., G. I. Zaginaylov, and S. A. Steshenko, "Rigorous electromagnetic analysis of coaxial gyrotron cavities," Technical Physics, Vol. 49, 887-894, 2004.
doi:10.1134/1.1778864 Google Scholar
12. Ioannidis, Z. C., O. Dumbrajs, and I. O. Tigelis, "Eigenvalues and Ohmic losses in coaxial gyrotron cavity," IEEE Trans. Plasma Sci., Vol. 34, No. 4, 1516-1522, 2006.
doi:10.1109/TPS.2006.876518 Google Scholar
13. Ioannidis, Z. C., K. A. Avramides, G. P. Latsas, and I. G. Tigelis, , "Azimuthal mode coupling in coaxial waveguides and cavities with longitudinally corrugated insert," IEEE Trans. Plasma Sci., Vol. 39, No. 5, 1213-1221, 2011.
doi:10.1109/TPS.2011.2118766 Google Scholar
14. Dumbrajs, O. and G. I. Zaginaylov, "Ohmic losses in coaxial gyrotron cavity with corrugated insert," IEEE Trans. Plasma Sci., Vol. 32, 861-866, Jun. 2004.
doi:10.1109/TPS.2004.827591 Google Scholar
15. Zaginaylov, G. I., N. N. Tkachuk, V. I. Shcherbinin, and K. Schuenemann, "Rigorous calculation of energy losses in cavity of ITER relevant coaxial gyrotron," Proceedings of 35th European Microwave Conference, 1107-1110, 2005. Google Scholar
16. Piosczyk, B., et al. "165-GHz coaxial cavity gyrotron," IEEE Trans. on Plasma Science, Vol. 32, 853-860, Jun. 2004.
doi:10.1109/TPS.2004.827593 Google Scholar
17. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1991.
18. Shcherbina, V. A., "The diffraction problem in periodic solutions," Telecommunication and Radio Engineering, Vol. 61, No. 5, 382-393, 2004.
doi:10.1615/TelecomRadEng.v61.i5.20 Google Scholar
19. Mitina, I. V., "Method of numerical analysis of spectrum of flat resonators," Electromagnetic Phenomena, Vol. 5, No. 1, 26-31, 2005. Google Scholar
20. Fliflet, A. W., "Linear and non-linear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes," Int. J. Electronics, Vol. 61, No. 6, 1049-1080, 1986.
doi:10.1080/00207218608920939 Google Scholar
21. Katsenelenbaum, B. Z., L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, , Theory of Nonuniform Waveguides: The Cross-section Method, 1998.
22. Hadamard, J., "Le Probleme de Cauchy et Les Equations Aux Derivees Partielles Lineaires Hyperboliques," Hermann & Cie., 1932. Google Scholar
23. Galishnikova, T. N. and A. S. Il'insky, Numerical Methods in the Diffraction Problems, Edition of Moscow University, 1987.
. Il'insky, A. S., A. Ja Slepjan, and G. Ja Slepjan, Propagation, Di®raction and Dissipation of Electromagnetic Waves, The IEE and Peter Peregrinous Ltd. Electromagnetic Waves, 1993.
25. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 7th Ed., A. Jeffrey and D. Zwillinger (eds.), Academic Press, 2007.