1. Yablonovitch , E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Dowling , J. P., "Mirror on the wall: You're omnidirectional after all?," Science, Vol. 282, 1841-1843, 1998.
doi:10.1126/science.282.5395.1841 Google Scholar
4. Yablonovitch, , E., "Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters," Optics Letters, Vol. 23, 1648-1649, 1998.
doi:10.1364/OL.23.001648 Google Scholar
5. Chigrin , D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A: Mater. Sci. Process., Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849 Google Scholar
6. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopou-los, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679 Google Scholar
7. Lusk , D., I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal," Opt. Commun., Vol. 198, 273-279, 2001.
doi:10.1016/S0030-4018(01)01531-0 Google Scholar
8. Ibanescu, M., Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science, Vol. 289, 415-418, 2000.
doi:10.1126/science.289.5478.415 Google Scholar
9. Srivastava , S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fluorescence films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.
doi:10.2528/PIER07050202 Google Scholar
10. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903 Google Scholar
11. Bhargava , A. and B. Suthar, "Localized modes in chalcogenide photonic multilayers with As-S-Se defect layer," Chalcogenide Letters, Vol. 6, No. 10, 529-533, 2009. Google Scholar
12. Villar, I. D., I. R. Matias, F. J. Arregui, and R. O. Claus, "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters," Optics Express, Vol. 11, 430-436, 2003.
doi:10.1364/OE.11.000430 Google Scholar
13. Zhang, Y. and B. Y. Gu, "Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies," Optics Express, Vol. 12, 5910-5915, 2004.
doi:10.1364/OPEX.12.005910 Google Scholar
14. Xiao, F., B. Juswardy, and K. Alameh, "Tunable photonic microwave filters based on opto-VLSI processors," IEEE Photonics Technology Letters, Vol. 21, 751-753, 2009.
doi:10.1109/LPT.2009.2016979 Google Scholar
15. Yang, W. X., J. M. Hou, and R. K. Lee, "Ultraslow bright and dark solitons in semiconductor quantum wells," Phys. Rev. A, Vol. 77, (033838)1-7, 2008. Google Scholar
16. Christmann, G., C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, "Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities," Phys. Rev. B, Vol. 82, (113308)1-4, 2010. Google Scholar
17. Schindler , C. and R. Zimmermann, "Analysis of the excitonexciton interaction in semiconductor quantum wells," Phys. Rev. B, Vol. 78, 045313, 2008.
doi:10.1103/PhysRevB.78.045313 Google Scholar
18. Politano, A. and G. Chiarello, "Collective electronic excitations in systems exhibiting quantum well states," Surf. Rev. Lett., Vol. 16, 171-190, 2009.
doi:10.1142/S0218625X09012482 Google Scholar
19. Politano, A. and G. Chiarello, "Enhancement of hydrolysis in alkali ultrathin layers on metal substrates in the presence of electron confinement," Chem. Phys. Lett., Vol. 494, 84-87, 2010.
doi:10.1016/j.cplett.2010.05.089 Google Scholar
20. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Purely quadratic dispersion of surface plasmon in Ag/Ni(111): The in°uence of electron confinement," Phys. Status Solidi Rapid Res. Lett. (RRL), Vol. 2, 86-88, 2008.
doi:10.1002/pssr.200701307 Google Scholar
21. Zhang, C., F. Qiao, J. Wan, J. Zi, and , "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys., Vol. 87, 3174-3176, 2000.
doi:10.1063/1.372318 Google Scholar
22. Qiao, F., C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: Multiple channeled filtering phenomena," Appl. Phys. Lett., Vol. 77, 3698-3700, 2000.
doi:10.1063/1.1330570 Google Scholar
23. Xiang, Y., X. Dai, S. Wen, and D. Fan, "Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials," J. Opt. Soc. Am. A, Vol. 24, A28-A32, 2007.
doi:10.1364/JOSAA.24.000A28 Google Scholar
24. Chen , Y. H., "Frequency response of resonance modes in heterostructures composed of single-negative materials," J. Opt. Soc. Am. B, Vol. 25, 1794-1799, 2008.
doi:10.1364/JOSAB.25.001794 Google Scholar
25. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, 1988.
26. Born , M. and E. Wolf, Principle of Optics, 4th Ed., Pergamon, 1970.