Vol. 36
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-03
A Novel Wavelet-Galerkin Method for Modeling Radio Wave Propagation in Tropospheric Ducts
By
Progress In Electromagnetics Research B, Vol. 36, 35-52, 2012
Abstract
In this paper, a novel Wavelet-Galerkin Method (WGM) is presented to model the radio-wave propagation in tropospheric ducts. Galerkin method, with Daubechies scaling functions, is used to discretize the height operator. Later, a marching algorithm is developed using Crank-Nicolson (CN) method. A new ``fictitious domain method'' is also developed for parabolic wave equation to incorporate the impedance boundary conditions in WGM. In the end, results are compared with those from Advance Refractive Effects Prediction System (AREPS). Results show that the wavelet based methods are indeed feasible to model the radio wave propagation in troposphere as accurately as AREPS and proposed method can be a good alternative to other conventional methods.
Citation
Asif Iqbal, and Varun Jeoti, "A Novel Wavelet-Galerkin Method for Modeling Radio Wave Propagation in Tropospheric Ducts," Progress In Electromagnetics Research B, Vol. 36, 35-52, 2012.
doi:10.2528/PIERB11091201
References

1. Levy, , M., , Parabolic Equation Methods for Electromagnetic Wave Propagation,, Vol. 45, , Inst. of Engineering & Technology, , 2000.
doi:10.1049/PBEW045E

2. Kuttler, , J., G. Dockery, and , "An improved-boundary algorithm for fourier split-step solutions of the parabolic wave equation," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 12, 1592-1599, 1996.
doi:10.1109/8.546245        Google Scholar

3. Isaakidis, , S. A., T. D. Xenos, and , "Parabolic equation solution of tropospheric wave propagation using FEM," Progress In Electromagnetics Research, , Vol. 49, , 25-271, 2004.        Google Scholar

4. Deshpande, V., M. Deshpande, and , "Study of electromagnetic wave propagation through dielectric slab doped randomly with thin metallic wires using finite element method," IEEE Microwave and Wireless Components Letters, , Vol. 15, No. 5, 306-308, 2005.
doi:10.1109/LMWC.2005.847663        Google Scholar

5. Oraizi, , H., S. Hosseinzadeh, and , "A novel marching algorithm for radio wave propagation modeling over rough surfaces," Progress In Electromagnetics Research, , Vol. 57, 85-100, 2006..
doi:10.2528/PIER05051001        Google Scholar

6. Arshad, K., F. Katsriku, and A. Lasebae, , "An investigation of wave propagation over irregular terrain and urban streets using finite elements," World Scientific and Engineering Academy and Society (WSEAS), , 105-110, 2007.        Google Scholar

7. Apaydin, , G., L. Sevgi, and , "The split-step-fourier and finite-element-based parabolic-equation propagation-prediction tools: Canonical tests, systematic comparisons, and calibration ,", Vol. 52, No. 3, 66-79, 2010.        Google Scholar

8. Apaydin, , G., L. Sevgi, and , "Numerical investigations of and path loss predictions for surface wave propagation over sea paths including hilly island transitions," IEEE Transactions on Antennas and Propagation,, Vol. 58, No. 4, , 1302-1314, , 2010.
doi:10.1109/TAP.2010.2041169        Google Scholar

9. Barrios, , A., "Considerations in the development of the advanced propagation model (APM) for us navy applications," Proceedings of the International Radar Conference,, 77-82, , Sep. 2003.        Google Scholar

10. Amaratunga, , K., J. Williams, S. Qian, and J. Weiss, , "Wavelet-Galerkin solutions for one dimensional partial differential equations," International Journal for Numerical Methods in Engineering, , Vol. 37, No. 16, 2703-2716, 1994.
doi:10.1002/nme.1620371602        Google Scholar

11. Liandrat, , J., , "Resolution of the 1D regularized burgers equation using a spatial wavelet approximation," DTIC Document, Tech. Rep., , 1990..        Google Scholar

12. Qian, S., J. Weiss, and , "Wavelets and the numerical solution of partial di®erential equations," Journal of Computational Physics,, Vol. 106, No. 1, 155-175, , 1993.
doi:10.1006/jcph.1993.1100        Google Scholar

13. Pierce, , I., L. Watkins, and , "Modelling optical pulse propagation in nonlinear media using wavelets," Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, , 361-363, Jun. 1996..
doi:10.1109/TFSA.1996.547488        Google Scholar

14. Reginska, , T., L. Eldn, and , "Solving the sideways heat equation by a wavelet-Galerkin method," Inverse Problems, Vol. 13, , 1093, 1997.
doi:10.1088/0266-5611/13/4/014        Google Scholar

15. Lu, , D., T. Ohyoshi, and L. Zhu, , "Treatment of boundary conditions in the application of wavelet-Galerkin method to an sh wave problem," International Journal of the Society of Materials Engineering for Resources,, Vol. 5, No. 1, 15-25, 1997.
doi:10.5188/ijsmer.5.15        Google Scholar

16. Gerstoft, , P., L. Rogers, J. Krolik, and W. Hodgkiss, "Inversion for refractivity parameters from radar sea clutter," Radio Science, Vol. 38, No. 3, , 122, , 2003..
doi:10.1029/2002RS002640        Google Scholar

17. Barclay, L., , Propagation of Radiowaves,, Inst. of Engineering & Technology, , 2003.

18. Hitney, , H., J. Richter, R. Pappert, K. Anderson, and G. Baum gartner, Jr., , "Tropospheric radio propagation assessment," Pro-ceedings of the IEEE,, Vol. 73, No. 2, 265-283, 1985.
doi:10.1109/PROC.1985.13138        Google Scholar

19. Antoine, , X., A. Arnold, C. Besse, M. Ehrhardt, and A. Schdle, "Review of transparent and artificial boundary conditions techniques for linear and nonlinear SchrÄodinger equations," Communications in Computational Physics, Vol. 4, No. 4, 729-796, 2008.        Google Scholar

20. Daubechies, , I., , "Orthonormal bases of compactly supported wavelets," Communications on Pure and Applied Mathematics, Vol. 41, No. 7, 909-996, , 1988.
doi:10.1002/cpa.3160410705        Google Scholar

21. Chui, C. K., , An Introduction to Wavelets, , 1992.