Vol. 21
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-10-25
Effects of Reverse Radiation Noise on Millimeter-Wave Radiometric Imaging at Short Range
By
Progress In Electromagnetics Research M, Vol. 21, 177-188, 2011
Abstract
The existence of reverse radiation noise in the millimeter-wave (MMW) radiometric imaging system with a superheterodyne receiver seriously affects the imaging experiments carried out at short range, thus leading to the degradation of MMW radiometric images and difficulty in recognizing targets. Based on the generation mechanism of reverse radiation noise, the specific influence on imaging for relative radiometry is investigated in this paper, and some methods of eliminating or reducing this noise are proposed. Then, two series of comparative imaging experiments are conducted with a 3 mm band radiometric imaging system. Both theoretical analysis and experimental results are presented to validate the actual existence of interference-like stripes imposed by the reverse radiation noise. Moreover, it is proved that adopting an isolator in the MMW receiving front-end can effectively reduce the reverse radiation noise and significantly improve the imaging performance.
Citation
Taiyang Hu, Zelong Xiao, Jianzhong Xu, and Li Wu, "Effects of Reverse Radiation Noise on Millimeter-Wave Radiometric Imaging at Short Range," Progress In Electromagnetics Research M, Vol. 21, 177-188, 2011.
doi:10.2528/PIERM11092606
References

1. Yujiri, L., M. Shoucri, and P. Moffa, "Passive millimeter-wave imaging," IEEE Microwave Magazine, Vol. 4, No. 3, 39-50, 2003.
doi:10.1109/MMW.2003.1237476

2. Boettcher, E. J., K. Krapels, R. Driggers, J. Garcia, C. Schuetz, J. Samluk, L. Stein, W. Kiser, A. Visnansky, J. Grata, D. Wikner, and R. Harris, "Modeling passive millimeter wave imaging sensor performance for discriminating small watercraft," Applied Optics, Vol. 49, No. 19, E58-E66, 2010.
doi:10.1364/AO.49.000E58

3. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," Proceedings of IEEE, Vol. 95, No. 8, 1683-1690, 2007.
doi:10.1109/JPROC.2007.898832

4. Oka, S., H. Togo, N. Kukusu, and T. Nagatsuma, "Latest trends in millimeter-wave imaging technology," Progress In Electromagnetics Research Letters, Vol. 1, 197-204, 2008.
doi:10.2528/PIERL07120604

5. Yeom, S., D.-S. Lee, H. Lee, J.-Y. Son, and V. P. Guschin, "Distance estimation of concealed objects with stereoscopic passive millimeter-wave imaging," Progress In Electromagnetics Research, Vol. 115, 399-407, 2011.

6. Hung, C. Y., M. H. Weng, R. Y. Yang, and H. W. Wu, "Design of a compact CMOS bandpass filter for passive millimeter-wave imaging system application," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2323-2330, 2009.
doi:10.1163/156939309790416134

7. Thakur, J. P., W.-G. Kim, and Y.-H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasi-optics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.
doi:10.2528/PIER10022404

8. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Volume I: Fundamentals and Ra-diometry, Addison-Wesley Publishing Company, Massachusetts, 1981.

9. Peng, S.-S., Z.-C. Xu, and X.-G. Li, "Effect of inverse radiation noise of microwave radiometer for remote sensing on antenna temperature calibration," Journal of Microwaves, Vol. 13, No. 2, 108-113, 1997.

10. Li, J. and J.-S. Jiang, "Reverse radiation in microwave radiometer," Journal of Remote Sensing, Vol. 2, No. 4, 241-244, 1998.

11. Li, Z.-P., D.-M. Zhao, and J.-G. Miao, "Simulation study of the effect on inverse radiation thermal noise of microwave radiometer on antenna calibration," Remote Sensing Technology and Application, Vol. 22, No. 2, 268-271, 2007.

12. Xiao, Z.-L., T.-Y. Hu, J.-Z. Xu, and L. Wu, "Millimetre- wave radiometric imaging for concealed contraband detection on personnel," IET Image Processing, Vol. 5, No. 5, 375-381, 2011.
doi:10.1049/iet-ipr.2009.0230