1. Wolinski, T. R., A. Czapla, S. Ertman, M. Tefelska, M. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electronics, Vol. 39, 1021-1032, 2007.
doi:10.1007/s11082-007-9127-z Google Scholar
2. Edelmann, A. G. and S. F. Helfert, "Three-dimensional analysis of hexagonal structured photonic crystals using oblique coordinates," Opt. Quantum Electronics, Vol. 41, 243-254, 2009.
doi:10.1007/s11082-009-9342-x Google Scholar
3. Lourtioz, J., H. Benisty, V. Berger, and J. Gerard, Book Photonic Crystals, Springer-Verlag, Berlin Heidelberg, 2008.
4. Moghaddami, M. K., M. M. Mirsalehi, and A. R. Attari, "A 60。photonic crystal waveguide bend with improved transmission characteristics," Optica Applicata, Vol. 39, 2009. Google Scholar
5. Badaoui , H., M. Feham, and M. Abri, "Photonic-crystal band-pass resonant filters design using the two-dimensional FDTD method," International Journal of Computer Science Issues, IJCSI, Vol. 8, Issue 3, No. 2, 127-132, 2011.. Google Scholar
6. Joannopoulos , J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New York, 2007.
7. Li, S., H. W. Zhang, Q. Y. Wen, Y. Q. Song, W. W. Ling, and Y. X. Li, "Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime," Appl. Phys. B, Vol. 95, 745-749, 2009.
doi:10.1007/s00340-009-3470-7 Google Scholar
8. Taflove, A., Computational Electromagnetics: The Finite Difference Time Domain Method, Artech House, Boston, London, 1995.
9. Koshiba, M., Y. Tsuji, and S. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave and Wireless Components Letters, Vol. 11, 152-154, 2001.
doi:10.1109/7260.916327 Google Scholar