Vol. 28
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-12-12
Double Bends and Y-Shaped Splitter Design for Integrated Optics
By
Progress In Electromagnetics Research Letters, Vol. 28, 129-138, 2012
Abstract
We present new designs of waveguide components in photonic crystal structures used for routing light exhibiting high transmission. In particular, we focus on the design of a brick that will form the PhCs network, i.e., a double bends and Y-shaped splitter. Photonic crystals are considered a good way for realizing compact optical bends and splitters. The PhC consists of a triangular array of holes etched into InP/GaInAsP/InP heterostructure. Propagation characteristics of the proposed devices are analyzed utilizing two-dimensional finite difference time domain (FDTD) method. The FDTD simulations confirm their unprecedented efficiency and robustness with respect to wavelength and structural perturbations. The PhCs transmission properties are then presented and discussed. Numerical results show that a total transmission of about 75% at output ports is obtained.
Citation
Hadjira Abri Badaoui, Mohamed Feham, and Mehadji Abri, "Double Bends and Y-Shaped Splitter Design for Integrated Optics," Progress In Electromagnetics Research Letters, Vol. 28, 129-138, 2012.
doi:10.2528/PIERL11102404
References

1. Wolinski, T. R., A. Czapla, S. Ertman, M. Tefelska, M. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Tunable highly birefringent solid-core photonic liquid crystal fibers," Opt. Quantum Electronics, Vol. 39, 1021-1032, 2007.
doi:10.1007/s11082-007-9127-z

2. Edelmann, A. G. and S. F. Helfert, "Three-dimensional analysis of hexagonal structured photonic crystals using oblique coordinates," Opt. Quantum Electronics, Vol. 41, 243-254, 2009.
doi:10.1007/s11082-009-9342-x

3. Lourtioz, J., H. Benisty, V. Berger, and J. Gerard, Book Photonic Crystals, Springer-Verlag, Berlin Heidelberg, 2008.

4. Moghaddami, M. K., M. M. Mirsalehi, and A. R. Attari, "A 60photonic crystal waveguide bend with improved transmission characteristics," Optica Applicata, Vol. 39, 2009.

5. Badaoui , H., M. Feham, and M. Abri, "Photonic-crystal band-pass resonant filters design using the two-dimensional FDTD method," International Journal of Computer Science Issues, IJCSI, Vol. 8, Issue 3, No. 2, 127-132, 2011..

6. Joannopoulos , J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New York, 2007.

7. Li, S., H. W. Zhang, Q. Y. Wen, Y. Q. Song, W. W. Ling, and Y. X. Li, "Improved amplitude-frequency characteristics for T-splitter photonic crystal waveguides in terahertz regime," Appl. Phys. B, Vol. 95, 745-749, 2009.
doi:10.1007/s00340-009-3470-7

8. Taflove, A., Computational Electromagnetics: The Finite Difference Time Domain Method, Artech House, Boston, London, 1995.

9. Koshiba, M., Y. Tsuji, and S. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave and Wireless Components Letters, Vol. 11, 152-154, 2001.
doi:10.1109/7260.916327