Vol. 29
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-01-26
Permittivity of Waste-Activated Sludge by an Open-Ended Coaxial Line
By
Progress In Electromagnetics Research Letters, Vol. 29, 139-149, 2012
Abstract
The complex permittivity of thickened waste activated sludge (WAS) was measured from 3 MHz to 40 GHz. The solid content of the thickened WAS sample was varied from 4.5% to 18% by weight. The permittivity spectra exhibit features typical of biological tissues that have a high water content. At high frequencies, a Debye type dispersion is observed with a relaxation rate of 19 GHz characteristic of the bulk water in the sample (γ-dispersion). At lower frequencies, the solid content of the samples determines the properties of the permittivity. The onset of the so-called β-dispersion, attributed to the charging of cell membranes, occurs between 10-100 MHz. For samples with higher solid concentrations, a weak dispersion of the real part of the permittivity, characteristic of bound water, was observed at intermediate frequencies (δ-dispersion).
Citation
Jake S. Bobowski, Thomas Johnson, and Cigdem Eskicioglu, "Permittivity of Waste-Activated Sludge by an Open-Ended Coaxial Line," Progress In Electromagnetics Research Letters, Vol. 29, 139-149, 2012.
doi:10.2528/PIERL11120304
References

1. Li, , D. H. and J. J. Ganczarczyk, "Structure of activated sludge floes," Biotechnol. Bioeng., Vol. 35, No. 1, 57-65, 1990.
doi:10.1002/bit.260350109

2. Appels, L., J. Baeyens, J. Degrµeve, and R. Dewil, "Principles and potential of the anaerobic digestion of waste-activated sludge," Prog. Energy Combust. Sci.,, Vol. 34, No. 6, 755-781, 2008.
doi:10.1016/j.pecs.2008.06.002

3. Eskicioglu, C., K. J. Kennedy, and R. L. Droste, "Enhanced disinfection and methane production from sewage sludge by microwave irradiation," Desalination, Vol. 248, No. 1-3, 279-285, 2009.
doi:10.1016/j.desal.2008.05.066

4. Saha, M., C. Eskicioglu, and J. Marin, "Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge," Biores. Technol., Vol. 102, No. 17, 7815-7826, 2011.
doi:10.1016/j.biortech.2011.06.053

5. Salerno, M. B., H.-S. Lee, P. Parameswaran, and B. E. Rittmann, "Using a pulsed electric field as a pretreatment for improved biosolids digestion and methanogenesis," Water Environ. Res. , Vol. 81, No. 8, 831-839, 2009.
doi:10.2175/106143009X407366

6. Lee, I.-S., P. Parameswaran, J. N. Alder, and B. E. Rittmann, "Feasibility of focused-pulsed treated waste activated sludge as a supplemental electron donor for denitrification," Water Environ. Res., Vol. 82, No. 23, 2316-2324, 2010.
doi:10.2175/106143010X12609736967288

7. Sheng, J., R. Vannela, and B. E. Rittmann, "Evaluation of cell-disruption effects of pulsed-electric-field treatment of synechocystis PCC 6803," Environ. Sci. Technol., Vol. 45, No. 8, 3795-3802, 2011.
doi:10.1021/es103339x

8. Park , B., J.-H. Ahn, J. Kim, and S. Hwang, "Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge," Water Sci. Technol., Vol. 50, No. 9, 17-23, 2004.

9. Eskicioglu , C., K. J. Kennedy, and R. L. Droste, "Enhancement of batch waste activated sludge digestion by microwave pretreatment," Water Environ. Res., Vol. 79, No. 11, 2304-2317, 2007.
doi:10.2175/106143007X184069

10. Hong, S. M., J. K. Park, N. Terradej, Y. O. Lee, Y. K. Cho, and C. H. Park, "Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance," Water Environ. Res., Vol. 78, No. 1, 76-83, 2006.
doi:10.2175/106143005X84549

11. Kaatze, U. and Y. Feldman, "Broadband dielectric spectrometry of liquids and biosystems," Meas. Sci. Technol., Vol. 17, No. 2, R17-R35, 2006.
doi:10.1088/0957-0233/17/2/R01

12. Stuchly , M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies --- a review," IEEE Trans. Instrum. Meas., Vol. 29, No. 3, 176-183, 1980.
doi:10.1109/TIM.1980.4314902

13. Kraszewski , A., M. A. Stuchly, and S. S. Stuchly, "ANA claibration method for measurements of dielectric properties," IEEE Trans. Instrum. Meas., Vol. 32, No. 2, 385-387, 1983.
doi:10.1109/TIM.1983.4315084

14. Bao, J.-Z., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," J. Chem. Phys., Vol. 104, No. 12, 4441-4445, 1996.
doi:10.1063/1.471197

15. Buchner , R., J. Barthel, and J. Stauber, "The dielectric relaxation of water between 0C and 35C," Chem. Phys. Lett.,, Vol. 306, No. 1-2, 57-63, 1999.
doi:10.1016/S0009-2614(99)00455-8

16. Schwan , H. P., "Linear and nonlinear electrode polarization and biological materials," Ann. Biomed. Eng., Vol. 20, No. 3, 269-288, 1992.
doi:10.1007/BF02368531

17. Raicu , V., T. Saibara, and A. Irimajiri, "Dielectric properties of rat liver in vivo: a noninvasive approach using an open-ended coaxial probe at audio/radio frequencies," Bioelectrochem. Bioenerg., Vol. 47, No. 2, 325-332, 1998.
doi:10.1016/S0302-4598(98)00171-8

18. Pethig , R., "Dielectric properties of biological materials: biophysical and medical applications," IEEE Trans. Electr. Insul., Vol. 19, No. 5, 453-474, 1984.
doi:10.1109/TEI.1984.298769