Vol. 29
Latest Volume
All Volumes
PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-01-26
Permittivity of Waste-Activated Sludge by an Open-Ended Coaxial Line
By
Progress In Electromagnetics Research Letters, Vol. 29, 139-149, 2012
Abstract
The complex permittivity of thickened waste activated sludge (WAS) was measured from 3 MHz to 40 GHz. The solid content of the thickened WAS sample was varied from 4.5% to 18% by weight. The permittivity spectra exhibit features typical of biological tissues that have a high water content. At high frequencies, a Debye type dispersion is observed with a relaxation rate of 19 GHz characteristic of the bulk water in the sample (γ-dispersion). At lower frequencies, the solid content of the samples determines the properties of the permittivity. The onset of the so-called β-dispersion, attributed to the charging of cell membranes, occurs between 10-100 MHz. For samples with higher solid concentrations, a weak dispersion of the real part of the permittivity, characteristic of bound water, was observed at intermediate frequencies (δ-dispersion).
Citation
Jake S. Bobowski, Thomas Johnson, and Cigdem Eskicioglu, "Permittivity of Waste-Activated Sludge by an Open-Ended Coaxial Line," Progress In Electromagnetics Research Letters, Vol. 29, 139-149, 2012.
doi:10.2528/PIERL11120304
http://www.jpier.org/PIERL/pier.php?paper=11120304
References

1. Li, , D. H. and J. J. Ganczarczyk, "Structure of activated sludge floes," Biotechnol. Bioeng., Vol. 35, No. 1, 57-65, 1990.
doi:10.1002/bit.260350109

2. Appels, L. , J. Baeyens, J. Degrµeve, and R. Dewil, "Principles and potential of the anaerobic digestion of waste-activated sludge," Prog. Energy Combust. Sci.,, Vol. 34, No. 6, 755-781, 2008.
doi:10.1016/j.pecs.2008.06.002

3. Eskicioglu, C. , K. J. Kennedy, and R. L. Droste, "Enhanced disinfection and methane production from sewage sludge by microwave irradiation," Desalination, Vol. 248, No. 1-3, 279-285, 2009.
doi:10.1016/j.desal.2008.05.066

4. Saha, M. , C. Eskicioglu, and J. Marin, "Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge," Biores. Technol., Vol. 102, No. 17, 7815-7826, 2011.
doi:10.1016/j.biortech.2011.06.053

5. Salerno, M. B., H.-S. Lee, P. Parameswaran, and B. E. Rittmann, "Using a pulsed electric field as a pretreatment for improved biosolids digestion and methanogenesis," Water Environ. Res. , Vol. 81, No. 8, 831-839, 2009.
doi:10.2175/106143009X407366

6. Lee, I.-S., P. Parameswaran, J. N. Alder, and B. E. Rittmann, "Feasibility of focused-pulsed treated waste activated sludge as a supplemental electron donor for denitrification," Water Environ. Res., Vol. 82, No. 23, 2316-2324, 2010.
doi:10.2175/106143010X12609736967288

7. Sheng, J. , R. Vannela, and B. E. Rittmann, "Evaluation of cell-disruption effects of pulsed-electric-field treatment of synechocystis PCC 6803," Environ. Sci. Technol., Vol. 45, No. 8, 3795-3802, 2011.
doi:10.1021/es103339x

8. Park , B. , J.-H. Ahn, J. Kim, and S. Hwang, "Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge," Water Sci. Technol., Vol. 50, No. 9, 17-23, 2004.

9. Eskicioglu , C., K. J. Kennedy, and R. L. Droste, "Enhancement of batch waste activated sludge digestion by microwave pretreatment," Water Environ. Res., Vol. 79, No. 11, 2304-2317, 2007.
doi:10.2175/106143007X184069

10. Hong, S. M. , J. K. Park, N. Terradej, Y. O. Lee, Y. K. Cho, and C. H. Park, "Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance," Water Environ. Res., Vol. 78, No. 1, 76-83, 2006.
doi:10.2175/106143005X84549

11. Kaatze, U. and Y. Feldman, "Broadband dielectric spectrometry of liquids and biosystems," Meas. Sci. Technol., Vol. 17, No. 2, R17-R35, 2006.
doi:10.1088/0957-0233/17/2/R01

12. Stuchly , M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies --- a review," IEEE Trans. Instrum. Meas., Vol. 29, No. 3, 176-183, 1980.
doi:10.1109/TIM.1980.4314902

13. Kraszewski , A., M. A. Stuchly, and S. S. Stuchly, "ANA claibration method for measurements of dielectric properties," IEEE Trans. Instrum. Meas., Vol. 32, No. 2, 385-387, 1983.
doi:10.1109/TIM.1983.4315084

14. Bao, J.-Z., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," J. Chem. Phys., Vol. 104, No. 12, 4441-4445, 1996.
doi:10.1063/1.471197

15. Buchner , R., J. Barthel, and J. Stauber, "The dielectric relaxation of water between 0C and 35C," Chem. Phys. Lett.,, Vol. 306, No. 1-2, 57-63, 1999.
doi:10.1016/S0009-2614(99)00455-8

16. Schwan , H. P., "Linear and nonlinear electrode polarization and biological materials," Ann. Biomed. Eng., Vol. 20, No. 3, 269-288, 1992.
doi:10.1007/BF02368531

17. Raicu , V., T. Saibara, and A. Irimajiri, "Dielectric properties of rat liver in vivo: a noninvasive approach using an open-ended coaxial probe at audio/radio frequencies," Bioelectrochem. Bioenerg., Vol. 47, No. 2, 325-332, 1998.
doi:10.1016/S0302-4598(98)00171-8

18. Pethig , R., "Dielectric properties of biological materials: biophysical and medical applications," IEEE Trans. Electr. Insul., Vol. 19, No. 5, 453-474, 1984.
doi:10.1109/TEI.1984.298769