Vol. 30
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-02-29
Performance Comparison of Ed, TR and Dtr IR-UWB Receivers for Combined Pam-Ppm Modulation in Realistic UWB Channels
By
Progress In Electromagnetics Research Letters, Vol. 30, 91-103, 2012
Abstract
This paper studies the bit error rate (BER) performance of non-coherent impulse-radio ultra wideband (IR-UWB) correlation receivers in the IEEE 802.15.3a channel for combined binary pulse amplitude modulation-pulse position modulation (BPAM-PPM) scheme. The BER performance is based on the channel averaged signal-to-noise ratio (SNR). The study includes simple transmitted reference (TR), differential TR (DTR), and energy detection (ED) receiver structures. Moreover, different performance parameters are addressed, namely the signal bandwidth integration window factor, number of pulses per bit, and receiver power consumption. ED receivers with BPAM-PPM are shown to outperform simple TR receivers and have a performance which approaches that of differential TR (DTR) receivers with smaller power consumption for the same design parameters.
Citation
Heba A. Shaban, and Mohamad Abou El-Nasr, "Performance Comparison of Ed, TR and Dtr IR-UWB Receivers for Combined Pam-Ppm Modulation in Realistic UWB Channels," Progress In Electromagnetics Research Letters, Vol. 30, 91-103, 2012.
doi:10.2528/PIERL11120906
References

1. Hirt, W. and M. Weisenhorn, Robust non-coherent receiver for PAM-PPM signals, Patent 20 060 285 578, December 2006, [Online], Available: http://www.freepatentsonline.com/y2006/0285578.html.

2. Shaban, H., M. El-Nasr, and R. Buehrer, "A framework for the power consumption and BER performance of ultra-low power wireless swearable healthcare and human locomotion tracking systems via UWB radios," 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 322-327, 2009.
doi:10.1109/ISSPIT.2009.5407535

3. Shaban, H., A novel highly accurate wireless wearable human locomotion tracking and gait analysis system via UWB radios, Ph.D. Dissertation, Virginia Tech., 2010.

4. Khani, H. and P. Azmi, "Performance analysis of a high data rate UWB-DTR system in dense multipath channels," Progress In Electromagnetics Research B, Vol. 5, 119-131, 2008.
doi:10.2528/PIERB08021003

5. Shaban, H., M. A. El-Nasr, and R. Buehrer, "Performance of ultralow-power IR-UWB correlator receivers for highly accurate wearable human locomotion tracking and gait analysis systems," IEEE Global Telecommunications Conference, GLOBECOM 2009, 1-6, Nov. 30--Dec. 4, 2009.

6. Reed, J. H. (ed.), An Introduction to Ultra Wideband Communication Systems, Prentice Hall, New Jersey, 2005.

7. Chao, Y.-L. and R. Scholtz, "Optimal and suboptimal receivers for ultra-wideband transmitted reference systems," IEEE Global Telecommunications Conference, GLOBECOM 2003, Vol. 2, 759-763, Dec. 1--5, 2003.

8. Stoica, L., Non-coherent energy detection tranceivers for ultra wideband impulse radio systems, Ph.D. dissertation, University of Oulu Finland, 2008.

9. Bosotti, L. and G. Pirani, "A PAM-PPM signalling format in optical fibre digital communications," Optical and Quantum Electronics, Vol. 11, 71-86, 1979, 10.1007/BF00624059, [Online], Available: http://dx.doi.org/10.1007/BF00624059.
doi:10.1007/BF00624059

10. Abou-Rjeily, C., N. Daniele, and J.-C. Belfiore, "On high data rate space-time codes for ultra-wideband systems," 2005 IEEE International Conference on Ultra-Wideband, ICU 2005, 1-6, 2005.

11. Shen, X., M. Guizani, R. C. Qiu, and T.-L. Ngoc (eds.), Ultra-Wideband Communications and Networks, 3rd Ed., West John Wiley & Sons, Sussex, England, 2006.
doi:10.1002/0470028521.ch1

12. Foerster, J., "Channel modeling sub-committee report final," Doc: IEEE P802.15-02/490r1, Tech. Rep., Feb. 2003.

13. Hao, K. and J. A. Gubner, "Performance measures and statistical quantities of rake receivers using maximal-ratio combining on the IEEE 802.15.3a UWB channel model," IEEE Transactions on Wireless Communications, 1-7, 2005.

14. Jia, T. and D. I. Kim, "Analysis of channel-averaged SINR for indoor UWB rake and transmitted reference systems," IEEE Transactions on Communications, Vol. 55, No. 10, 2022-2032, Oct. 2007.
doi:10.1109/TCOMM.2007.906435

15. Arslan, H., Z. N. Chen, and M.-G. D. Benedetto (eds.), Ultra Wideb and Wireless Communication, Wiley Interscience, New Jersey, 2006.
doi:10.1002/0470042397

16. Ryckaert, J., M. Verhelst, M. Badaroglu, S. Damico, V. De Heyn, C. Desset, P. Nuzzo, B. Van Poucke, P. Wambacq, A. Baschirotto, W. Dehaene, and G. Van der Plas, "A CMOS ultra-wideband receiver for low data-rate communication," IEEE J. Solid-State Circuits, Vol. 42, No. 1, 2515-2525, Nov. 2007.
doi:10.1109/JSSC.2007.907195

17. Verhelst, M. and W. Dehaene, "Analysis of the QAC IR-UWB receiver for low energy, low data-rate communication," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 55, No. 8, 2423-2432, Sept. 2008.
doi:10.1109/TCSI.2008.918230

18. J, Gubner, "The IEEE 802.15.3a UWB channel model as a two-dimensional augmented cluster process," IEEE Transactions on Information Theory, Mar. 2006.

19. Hao, K. and J. Gubner, "The distribution of sums of path gains in the IEEE 802.15.3a UWB channel model," IEEE Transactions on Wireless Communications, Vol. 6, No. 3, 811-816, Mar. 2007.
doi:10.1109/TWC.2007.05438

20. Weisenhorn, M. and W. Hirt, "Robust noncoherent receiver exploiting UWB channel properties," Joint International Workshop on Ultra Wideband Systems, 2004, 156-160, May 18--21, 2004.