Vol. 29
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-02-04
Microstrip Phase Inverter Using Interdigital Strip Lines and Defected Ground
By
Progress In Electromagnetics Research Letters, Vol. 29, 167-173, 2012
Abstract
A new wide-band microstrip phase inverter is reported in this paper. Interdigital striplines, defected ground and via holes are used to obtain 180° phase shift. The structure is simple and can be realized with ordinary microwave integrated circuit (MIC) fabrication process. The bandwidth is enhanced largely. A lumped-element model of the phase shifter is devised. The fabricated phase inverter has a bandwidth of 105.6% (2.065-6.682 GHz), with 1 dB insertion loss and a phase deviation less than 10°.
Citation
Xu-Chun Zhang, Chang-Hong Liang, and Jun Wei Xie, "Microstrip Phase Inverter Using Interdigital Strip Lines and Defected Ground," Progress In Electromagnetics Research Letters, Vol. 29, 167-173, 2012.
doi:10.2528/PIERL11121403
References

1. March, S., "A wideband stripline hybrid ring," IEEE Trans. Microwave Theory Tech., Vol. 16, 361, Jun. 1968.
doi:10.1109/TMTT.1968.1126693

2. Chiou, Y. C., C. H. Tsai, J. S. Wu, and J.-T. Kuo, "Miniaturization design for planar hybrid ring couplers ," IEEE MTT-S International Microwave Workshop, 19-22, 2008.

3. Wang, T., Z. Ou, and K. Wu, "Experimental study of wideband uniplanar phase inverters for MIC's," IEEE MTT-S Int. Microwave Symp. Dig., 777-780, 1997.

4. Wang, T. and K.Wu, "Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC's," IEEE Trans. Microwave Theory Tech., Vol. 47, 198-206, Feb. 1999.
doi:10.1109/22.744295

5. Chang, C. Y. and C.-C. Yang, "A novel broad-band Chebyshev-response rat-race ring coupler," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 455-462, Apr. 1999.
doi:10.1109/22.754879

6. Kao, , C. W. and C. H. Chen, "Novel uniplanar 180 hybrid-ring couplers with spiral-type phase inverters," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 10, 412-414, Feb. 2000.
doi:10.1109/75.877229

7. Mousavi, P., R. R. Mansour, and M. Daneshmand, "A novel wide band 180-degree phase shift transition on multilayer substrates," IEEE MTT-S Int. Microwave Symp. Dig., 1887-1890, 2004.

8. Chi, C. H. and C. Y. Chang, "A compact wideband 1800 hybrid ring coupler using a novel interdigital CPS inverter," Proceedings of the 37th European Microwave Conference, 548-551, Munich, Germany, Oct. 2007.

9. Mo, T. T., Q. Xue, and C. H. Chan, "A broadband compact microstrip rat-race hybrid using a novel CPW inverter," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 1, 161-167, Jan. 2007.
doi:10.1109/TMTT.2006.888938

10. Kim, J. H., D. W. Woo, G. Y. Jo, and W. S. Park, "Microstrip phase inverter using slotted ground," Antenna and Propagation Society International Symposium (APSURS), 1-4, 2010.

11. U-yen, K., E. J. Wollack, J. Papapolymerou, and J. Laskar, "A Broadband planar magic-T using microstrip-slotline transitions," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, 172-177, 2008.
doi:10.1109/TMTT.2007.912213