Vol. 29
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-01-20
Experimental Characterization of a Wireless MIMO Channel at 2.4 GHz in Underground Mine Gallery
By
Progress In Electromagnetics Research Letters, Vol. 29, 97-106, 2012
Abstract
This paper deals with several aspects relative to the Multiple-Input Multiple-Output (MIMO) propagation channel. Measurement campaigns, made in a real gold mine at 2.4 GHz under line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios, have been analyzed to obtain the relevant statistical parameters of the channel. It was shown that the MIMO exploit the multipath propagation in rich scattering environment to increase the capacity. Hence, the channel is characterized in terms of K-factor, path loss, shadowing, and capacity. Results show a propagation behavior that is specific for these underground environments with rough surfaces.
Citation
Ismail Ben Mabrouk, Larbi Talbi, Bilel Mnasri, Mourad Nedil, and Nahi Kandil, "Experimental Characterization of a Wireless MIMO Channel at 2.4 GHz in Underground Mine Gallery," Progress In Electromagnetics Research Letters, Vol. 29, 97-106, 2012.
doi:10.2528/PIERL11122904
References

1. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Pers. Commun. , Vol. 6, 311-335, Mar. 1998.
doi:10.1023/A:1008889222784

2. Foschini, G. J., "Layered space-time architecture for wireless communication in a fading environment when using multielement antennas," Bell Labs Tech. J., 41-59, Autumn 1996.

3. Telatar, E., "Capacity of multiantenna gaussian channels," Tech. Memo., AT & T Bell Laboratories, Jun. 1995.

4. Raleigh, G. and J. M. Cioffi, "Spatial-temporal coding for wireless ommunications," IEEE Trans. Commun., Vol. 46, 357-366, 1998.
doi:10.1109/26.662641

5. Bolcskei, H., D. Gesbert, and A. J. Paulraj, "On the capacity of OFDM based spatial multiplexing systems ," IEEE Trans. Commun., Vol. 50, 225-234, Feb. 2002.
doi:10.1109/26.983319

6. Molina-Garcia-Pardo, J.-M., M. Lienard, E. Simon, and P. Degauque, "On the possibility of applying polarization diversity in tunnels ," Proc. MSWIM Conf., 392-395, Tenerife, Spain, Oct. 26-30, 2009.

7. Molina-Garcia-Pardo, J. M., J.-V. Rodriguez, and L. Juan-Llacer, "Polarized indoor MIMO channel measurements at 2.45 GHz," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3818-3828, 2008.
doi:10.1109/TAP.2008.2005542

8. Molina-Garcia-Pardo, J. M., M. Lienard, A. Nasr, and P. Degauque, "On the possibility of interpreting field variations and polarization in arched tunnels using a model for propagation in rectangular or circular tunnels," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1206-1211, Apr. 2008.
doi:10.1109/TAP.2008.919220

9. Lienard, M., P. Degauque, J. Baudet, and D. Degardin, "Investigation on MIMO channels in subway tunnels," IEEE J. on Selected Areas in Communications, Vol. 21, No. 3, 332-339, Apr. 2003.
doi:10.1109/JSAC.2003.809627

10. Lienard, M. and P. Degauque, "Propagation in wide tunnels at 2 GHz: A statistical analysis," IEEE Trans. Veh. Technol., Vol. 47, 283-296, Feb. 1998.

11. Rappaport, T. S., S. Y. Seidel, and K. Takamizawa, "Statistical channel impulse response models for factory and open plan building radio communicate system design," IEEE Transactions an Communications, Vol. 39, No. 5, 794-807, May 1991.
doi:10.1109/26.87142

12. Sarris, I. and A. R. Nix, "Ricean K-factor measurements in a home and an o±ce environment in the 60 GHz band," Mobile and Wireless Communications Summit, 2007.

13. Benedetto, F., G. Giunta, A. Toscano, and L. Vegni, "Dynamic LOS/NLOS statistical discrimination of wireless mobile channels," IEEE 65th Vehicular Technology Conference, 3071-3075, Spring, 2007.
doi:10.1109/VETECS.2007.629

14. Tang, Z. and A. S. Mohan, "Experimental investigation of indoor MIMO Ricean channel capacity," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 55-58, 2005.
doi:10.1109/LAWP.2005.844144

15. Rappaport, T. S., Wireless Communications: Principles & Practice, Upper Saddle River, NJ, Prentice Hall PTR, 1996.

16. Emslie, A. G., R. L. Lagace, and P. F. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Trans. Antennas Propag., Vol. 23, 92-205, Mar. 1975.

17. Mariage, P., M. Lienard, and P. Degauque, "Theoretical and experimental approach of the propagation of high frequency waves in road tunnels," IEEE Trans. Antennas Propagat., Vol. 42, 75-81, Jan. 1994.
doi:10.1109/8.272304

18. Lienard, M. and P. Degauque, "Propagation in wide tunnels at 2 GHz: A statistical analysis," IEEE Trans. Veh. Technol., Vol. 47, 283-296, Feb. 1998.

19. Rissafi , Y., L. Talbi, and M. Ghaddar, "Experimental characterization of an UWB propagation channel in underground mines," IEEE Trans. Antennas Propag., 2011.

20. Shinozaki, S., M. Wada, A. Teranishi, H. Furukawa, and Y. Akaiwa, "Radio propagation characteristics in subway platform and tunnel in 2.5 GHz band," Indoor and Mobile Radio Commun., 1175-1179, Sep. 1995.

21. Foschini, G. J. and J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 315-335, Mar. 1996.