Vol. 31
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-04
Design and Implementation of a High Dynamic Range C Band Down-Converter
By
Progress In Electromagnetics Research Letters, Vol. 31, 25-33, 2012
Abstract
A technique that expands dynamic range (DR) of frequency down-converters in the C band frequency is presented. Primary characteristics of down-converter are evaluated to confirm that it can be used in microwave receivers. The C band down-converter is carried out by the combination of RF mixers, band pass interdigital filter, and X band combline filter which are designed entirely for this project. Attainment of the perfect receiver is the final purpose of this paper, and a method that causes 72 dB dynamic range, high tangential signal sensitivity and fine gain flatness is used for achieving the mentioned purpose. These efforts improve the dynamic range about 19 dB and gain flatness about 3.07 dB.
Citation
Vahid Saatchi, and Zeynab Tavakoli, "Design and Implementation of a High Dynamic Range C Band Down-Converter," Progress In Electromagnetics Research Letters, Vol. 31, 25-33, 2012.
doi:10.2528/PIERL12012010
References

1. Tsui, J. B. Y., Digital Techniques for Wideband Receivers, 2nd Ed., 220, Artch House Inc., Norwood, MA, 2001.

2. Le, G. Y., O. Gaborieau, P. Gamand, M. Isberg, P. Jakobsson, L. Jonsson, et al. "Highly integrated direct conversion receiver for GSM/GPRS/EDGE with on-chip -84 dB dynamic range continuous-time ΣΔ ADC," IEEE Journal of Solid State Circuits, Vol. 40, 403-411, February 2005.
doi:10.1109/JSSC.2004.841036

3. Yang, J., R. W. Brodersen, and D. Tse, "Addressing the dynamic range problem in cognitive radios," IEEE International Conference on Communication, Vol. 1--14, 5183-5188, 2007.
doi:10.1109/ICC.2007.857

4. Kim, S. H., M. Okada, and T. Hara, "A study on the adaptive RF frontend for low power consumption ISDB-T receiver," Proceeding of Military Communications Conference, 1-6, October 2007.

5. Li, K., J.-Y. Huang, and J.-F. Teng, "Research on receiver dynamic range extension with adjustable attenuator," 5th International Conference on Wireless Communications, Networking and Mobile Computing, 1-4, 2009.

6. Elbert, B. R., The Satellite Communication Applications Handbook, 2nd Ed., 81-82, Artech House, Boston, London, 2004.

7. Zheng, S. H., D. H. Xu, and X. M. Jin, "A new receiver architecture for smart antenna with digital beamforming," IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communication Proceeding, Vol. 1, 38-40, 2005.
doi:10.1109/MAPE.2005.1617841

8. David, M. P., Microwave Engineering, 3rd Ed., Chapter 8, Wiley, New York, 2005.

9. Merrill, I. S., Introduction to Radar Systems, 3rd Ed., 140, McGraw-Hill, New York, 2001.

10. Bae, J.-H., W.-K. Choi, J.-S. Kim, G.-Y. Choi, and J.-S. Chae, "Study on the demodulation structure of reader receiver in a passive RFID environment," Progress In Electromagnetics Research, Vol. 91, 243-258, 2009.
doi:10.2528/PIER09021103

11. Mathahu, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance --- Matching Networks, and Coupling Structures, McGraw-Hill, New York, 1964.

12. Harrington, J. B., "Improving system and environmental DF accuracy," Tech. Notes, Vol. 9, No. 1, Watkins Johnson Company, January/February 1982.

13. Khaddaj Mallat, N., E. Moldovan, and S. O. Tatu, "Comparative demodulation results for six-port and conventional 60 GHz direct conversion receivers," Progress In Electromagnetics Research, Vol. 84, 437-449, 2008.
doi:10.2528/PIER08081003

14. Wang, J., J. Ni, S. Zhao, and Y.-X. Guo, "Compact microstrip ring branch-line coupler with harmonic suppression," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2119-2126, 2009.
doi:10.1163/156939309790109216