Vol. 24
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-03-21
Preliminary Results on Brain Monitoring of Meningitis Using 16 Channels Magnetic Induction Tomography Measurement System
By
Progress In Electromagnetics Research M, Vol. 24, 57-68, 2012
Abstract
Magnetic induction tomography (MIT) is a contactless measurement technique of biological tissue conductivity. In this study, the differential induced voltage equations are shown in single layer and n layers models. The paper describes a 16 channels MIT measurement system with working frequency of 1MHz, which can image the plan of low conductivity object. According to physical experiments, the sensitivity is about 0.29°/S·m-1, and the maximum shift of the phase noise is 0.08°. Some preliminary clinical experiments were done, including 2 cases of meningitis and 5 cases of brain normal patients. The comparison of all the measured values shows that all values are smaller than 1.7° in the brain normal cases, but the values of meningitis cases are more than 2°, higher than those of brain normal patients. Therefore, the MIT measurement system has great application prospect in dynamically monitoring the brain diseases.
Citation
Hai Jun Luo, Wei He, Zhang Xu, and Li Liu, "Preliminary Results on Brain Monitoring of Meningitis Using 16 Channels Magnetic Induction Tomography Measurement System," Progress In Electromagnetics Research M, Vol. 24, 57-68, 2012.
doi:10.2528/PIERM12021406
References

1. Xu, , Z., W. He, C.-H. He, and Z.-L. Zhang, "Study on the principles and system of measurement biological tissue conductivity with magnetic induction method," Chinese Journal of Scientific Instrument, Vol. 29, No. 9, 1878-1882, 2008.

2. He, W., C.-Y. Luo, and Z. Xu, Electrical Impedance Tomography Principle, Science Press, 2009.

3. Ma, L., H.-Y. Wei, and M. Soleimani, "Pipelines inspection using magnetic induction tomography based on a narrowband pass filtering method," Progress In Electromagnetics Research M, Vol. 23, 65-78, 2012.
doi:10.2528/PIERM11111109

4. Wei, H.-Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513

5. Chen, Y.-Y., X. Wang, Y. Lv, and D. Yang, "An image reconstruction algorithm based on Tikhonov and variation regularization for magnetic induction tomography," Journal of Northeastern University, Vol. 32, No. 4, 460-463, 2011.

6. Holder, D. S. and H. Griffiths, Magnetic induction tomography Electrical Impedance Tomography: Methods, History and Applications, Chapter 8, 213-238, IOP Publishing, 2005.

7. Griffiths, H., W. R. Stewart, and W. Gough, "Magnetic induction tomography: A measuring system for biological tissues," Annals of the New York Academy of Sciences, Vol. 873, 335-345, 1999.
doi:10.1111/j.1749-6632.1999.tb09481.x

8. Korjenevsky, A., V. Cherepenin, and S. Sapetsky, "Magnetic induction tomography: Experimental realization," Physiol. Meas., Vol. 21, No. 1, 89-94, 2000.
doi:10.1088/0967-3334/21/1/311

9. Scharfetter, H., H. K. Lackner, and J. Rosell, "Magnetic induction tomography: Hardware for multi-frequency measurement in biological tissues," Physiol. Meas., Vol. 22, 131-146, 2001.
doi:10.1088/0967-3334/22/1/317

10. Watson, S., R. J. Williams, and H. Griffiths, "The Cardiff magnetic induction tomography system," Proc. Int. Fed. Med. Biol. Eng. EMBEC02, 116-117, Vienna, Austria, Dec. 4-8, 2002.

11. Riedel, C. H. and O. Dossel, "Planar system for magnetic induction impedance measurement," 4th Conference on Biomedical Applications of Electrical Impedance Tomography, 23-25, UMIST, Manchester, Apr. 32, 2003.

12. Riedel, C. H., M. Keppelen, S. Nani, and O. Dossel, "Planar system for magnetic induction tomography using a sensor matrix," Physiol. Meas., Vol. 25, 403-411, 2004.
doi:10.1088/0967-3334/25/1/043

13. Rosell-Ferrer, J., R. Merwa, P. Brunner, and H. Scharfetter, "A multi-frequency magnetic induction tomography system using planar gradiometers: Data collection and calibration," Physiol. Meas., Vol. 27, 271-280, 2006.
doi:10.1088/0967-3334/27/5/S23

14. Dodd, C. V. and W. E. Deeds, "Analytical solutions to eddy-current probe coil problems," Journal of Applied Physics, Vol. 39, No. 6, 2829-2838, 1968.
doi:10.1063/1.1656680

15. Lei, Y.-Z., Analytic Solution of Harmonic Electromagnetic, 182-187, Science Press, 2000.

16. Wang, K., P.-C. He, Y. Dong, and L. Chen, "The application of cluster analysis and inverse distance weighted interpolation to appraising the water quality of three forks lake," Procedia Environmental Sciences, Vol. 10, 2511-2517, 2011.

17. Watson, S., R. J. Williams, H. Griffiths, W. Gough, and A. Morris, "Frequency downconversion and phase noise in MIT," Physiol. Meas., Vol. 23, 189-194, 2002.
doi:10.1088/0967-3334/23/1/319