Vol. 31
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-05
Metamaterial Inspired Patch Antenna with L-Shape Slot Loaded Ground Plane for Dual Band (WiMAX/WLAN) Applications
By
Progress In Electromagnetics Research Letters, Vol. 31, 35-43, 2012
Abstract
Due to the integration of different wireless applications at different bands on a single device, multi-band microstrip patch antenna is the best solution keeping the overall size of the device small. In the present work, a metamaterial-inspired antenna is proposed for WiMAX/WLAN applications. Design studies, parametric analysis, simulation results along with measurements for an L-shape slotted ground microstrip patch antenna with CSRR (Complementary Split Ring Resonator) embedded on patch structure operating simultaneously at WiMAX (3.5 GHz) and WLAN (5.8 GHz) are presented. The metamaterial-inspired loading is exploited to create resonance for upper WLAN band while an L-shape slot on the ground plane resonates at the WiMAX band, maintaining the antenna's overall small form-factor. The measured S-parameter and radiation patterns of fabricated prototype show that the proposed design is suitable for emerging WiMAX/WLAN applications.
Citation
Jagannath Malik, and Machavaram Kartikeyan, "Metamaterial Inspired Patch Antenna with L-Shape Slot Loaded Ground Plane for Dual Band (WiMAX/WLAN) Applications," Progress In Electromagnetics Research Letters, Vol. 31, 35-43, 2012.
doi:10.2528/PIERL12021908
References

1. Ge, Y., K. Esselle, and T. Bird, "Compact triple-arm multi-band monopole antenna," Proc. IEEE Int. Workshop: Antenna Technology Small Antennas and Novel Metamaterials, 172-175, March 2006.        Google Scholar

2. Kuo, Y. L. and K. L. Wong, "Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2187-2192, 2003.
doi:10.1109/TAP.2003.816391        Google Scholar

3. Eleftheriades, G. V., A. Grbic, and M. Antoniades, "Negative-refractive index transmission-line metamaterials and enabling electromagnetic applications," IEEE Antennas and Propagation Society Int. Symp. Digest, 1399-1402, June 2004.        Google Scholar

4. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 691-707, 2008.
doi:10.1109/TAP.2008.916949        Google Scholar

5. Malik, J. and M. V. Kartikeyan, "A stacked equilateral triangular patch antenna with Sierpinski gasket fractal for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 22, 71-81, 2011.        Google Scholar

6. Dahele, J. S., K. F. Lee, and D. P. Wond, "Dual frequency stacked annular ring microstrip antenna," IEEE Trans. Antennas Propag., Vol. 35, 1281-1285, 1987.
doi:10.1109/TAP.1987.1143997        Google Scholar

7. Long, S. A. and M. D. Walton, "A dual frequency stacked circular disk antenna," IEEE Trans. Antennas Propag. Soc. Int. Symp. Dig., Vol. 27, 270-273, 1979.
doi:10.1109/TAP.1979.1142078        Google Scholar

8. Sappan, A., "A new broadband stacked two layered microstrip antenna," IEEE Trans. Antennas Propag. Soc. Int. Symp. Dig., Vol. 22, 251-254, 1984.        Google Scholar

9. Tan, Y. M., Y. K. Chan, V. C. Koo, and M. T. Islam, "A novel wideband antenna for dual band WLAN application," IEEE International Conference on Communication Systems (ICCS), 97-100, 2010.        Google Scholar