Vol. 32
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-05-04
A Polarization-Dependent Mutiband RAM Design
By
Progress In Electromagnetics Research Letters, Vol. 32, 11-18, 2012
Abstract
A polarization-dependent mutiband radar absorbing material (PDM-RAM) composed of polarization-dependent multiband AMC (PDMAMC) and perfect electric conductor (PEC) cells is proposed. The PDMAMC is realized by etching a complementary split ring resonator (CSRR) on the patch of a conventional AMC. Around the two/three operational frequencies of the PDMAMC-elements for different electric field polarizations, the reflections of the PDMAMC and PEC have opposite phases, so for any normal incident plane wave the reflections cancel out. The basic principle is discussed, and a sample is measured. The results show that the proposed method is feasible and effective for the polarization-dependent multiband radar cross section (RCS) reduction.
Citation
Xu Yao, Xiang-Yu Cao, Jun Gao, and Qun Yang, "A Polarization-Dependent Mutiband RAM Design," Progress In Electromagnetics Research Letters, Vol. 32, 11-18, 2012.
doi:10.2528/PIERL12031101
References

1. Ling, J., S.-X. Gong, B. Lu, H.-W. Yuan, W.-T. Wang, and S. Liu, "A microstrip printed dipole antenna with UC-EBG ground for RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 607-616, 2009.
doi:10.1163/156939309788019868        Google Scholar

2. Wang, W.-T., S.-X. Gong, Y.-J. Zhang, F.-T. Zha, J. Ling, and T. Wan, "Low RCS dipole array synthesis based on MOM-PSO hybrid algorithm," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.
doi:10.2528/PIER09060902        Google Scholar

3. Sievenpiper, D., et al. "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. on Microw. Theory and Tech., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001        Google Scholar

4. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate ," IEEE Trans. on Antennas and Propag., Vol. 54, No. 1, 82-89, 2006.
doi:10.1109/TAP.2005.861575        Google Scholar

5. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. on Antennas and Propag. , Vol. 36, No. 10, 1443-1454, 1988.
doi:10.1109/8.8632        Google Scholar

6. Gao, Q., Y. Yin, D. B. Yan, and N. C. Yuan, "Application of metamaterials to ultra-thin radar-absorbing material design," Electron. Lett., Vol. 41, No. 17, 936-937, 2005.
doi:10.1049/el:20051239        Google Scholar

7. Simms, S. and V. Fusco, "Tunable thin radar absorber using artificial magnetic ground plane with variable backplane," Electron. Lett., Vol. 42, No. 21, 1197-1198, 2006.
doi:10.1049/el:20061989        Google Scholar

8. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Trans. on Antennas and Propag., Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329        Google Scholar

9. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Trans. on Antennas and Propag., Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306        Google Scholar

10. Zhang, Y., R. Mittra, B. Z. Wang, and N. T. Huang, "AMCs for ultra-thin and broadband RAM design," Electron. Lett., Vol. 45, No. 10, 484-485, 2009.
doi:10.1049/el.2009.3161        Google Scholar

11. Fu, Y. Q., Y. Q. Li, and N. C. Yuan, "Wideband composite AMC surfaces for RCS reduction," Microw. Opt. Technol. Lett., Vol. 53, No. 4, 712-715, 2011.
doi:10.1002/mop.25835        Google Scholar

12. Tan, Y., N. Yuan, Y. Yang, and Y. Fu, "Improved RCS and efficient waveguide slot antenna," Electron. Lett., Vol. 47, No. 10, 582-583, 2011.
doi:10.1049/el.2011.0842        Google Scholar

13. Peng, L., C. L. Ruan, and Z. Q. Li, "A novel compact and polarization-dependent mushroom-type EBG using CSRR for dual/triple-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 9, 489-491, 2010.
doi:10.1109/LMWC.2010.2051536        Google Scholar

14. Hosseini, M, A. Pirhadi, and M. Hakkak, "A novel AMC with little sensitivity to the angle of incidence using 2-layer Jerusalem cross FSS," Progress In Electromagnetics Research, Vol. 64, 43-51, 2006.
doi:10.2528/PIER06061301        Google Scholar

15. Ansoft HFSS ver. 12, www.Ansoft.com.        Google Scholar

16. Katsarakis, N., T. Koschny, and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.
doi:10.1063/1.1695439        Google Scholar

17. Falcone, F., T. Lopetegi, and J. D. Baena, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029        Google Scholar

18. Liu, Y. C., C. Y. Liu, and C. P. Kuei, "Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations," Microw. Opt. Technol. Lett., Vol. 48, No. 3, 449-453, 2005.
doi:10.1002/mop.21376        Google Scholar