Vol. 41
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-05-31
Mutual Coupling Analysis Using FDTD for Dielectric Resonator Antenna Reflectarray Radiation Prediction
By
Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012
Abstract
A simulation technique based on Finite-Difference Time-Domain (FDTD) is used to analyze mutual coupling effects in reflectarray environment. The neighbouring element method has the ability to analyze actual non-identical reflectarray unit-cell accurately compared to the traditional Floquet simulation which assumes all unit-cell is identical. It is also found that the nearest neighbouring unit-cell located in E-plane has a larger mutual coupling effects compared to the neighbouring unit-cell in H-plane. A good agreement is shown between simulation and measurement results. This technique presents a new prediction method for the radiation pattern of reflectarray antenna.
Citation
Izyani Dzulkipli, Mohd Haizal Jamaluddin, Raphael Gillard, Ronan Sauleau, Razali Ngah, Muhammad Ramlee Kamarudin, Norhudah Seman, and Mohamad Kamal Abd Rahim, "Mutual Coupling Analysis Using FDTD for Dielectric Resonator Antenna Reflectarray Radiation Prediction," Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012.
doi:10.2528/PIERB12031404
References

1. Berry, D. G. and R. G. Malech, "The reflectarray antenna," IEEE Trans. Antennas Propagat., Vol. 11, No. 6, 645-651, Nov. 1963.
doi:10.1109/TAP.1963.1138112        Google Scholar

2. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 287-296, Feb. 1997.
doi:10.1109/8.560348        Google Scholar

3. Encinar, J. A., L. S. Datashvili, J. Agustín Zornoza, M. Arrebola, M. Sierra-Castañer, J. L. Besada-Sanmartín, H. Baier, and H. Legay, "Dual-polarization dual-coverage reflectarray for space applications," IEEE Trans. Antennas Propagat., Vol. 54, No. 10, 2827-2837, Oct. 2006.
doi:10.1109/TAP.2006.882172        Google Scholar

4. Arrebola, M., J. A. Encinar, and M. Barba, "Multifed printed reflectarray with three simultaneous shaped beams for LMDS central station antenna," IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1518-1527, Jun. 2008.
doi:10.1109/TAP.2008.923360        Google Scholar

5. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth considerations for a microstrip reflectarray," Progress In Electromagnetics Research B, Vol. 3, 173-187, 2008.
doi:10.2528/PIERB07120405        Google Scholar

6. Li, R.-H., L. Chen, X.-T. Gu, and X.-W. Shi, "A novel element for broadband reflectarray antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1554-1563, 2011.
doi:10.1163/156939311797164891        Google Scholar

7. Raedi, Y., S. Nikmehr, and A. Poorziad, "A novel bandwidth enhancement technique for X-band RF MEMS actuated reconfigurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.
doi:10.2528/PIER10101201        Google Scholar

8. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing mems-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.2528/PIER09112506        Google Scholar

9. Li, H., B. Z. Wang, L. Guo, W. Shao, and P. Du, "A far field pattern analysis technique for reflectarrays including mutual coupling between elements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 87-95, 2009.
doi:10.1163/156939309787604607        Google Scholar

10. Venneri, F., S. Costanzo, G. Di Massa, and G. Amendola, "Aperture-coupled reflectarrays with enhanced bandwidth features," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1527-1537, 2008.
doi:10.1163/156939308786390247        Google Scholar

11. Li, H., B.-Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
doi:10.1163/156939307783239528        Google Scholar

12. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Bandwidth improvement of reflectarray antennas using closely spaced elements," Progress In Electromagnetics Research C, Vol. 18, 19-29, 2011.        Google Scholar

13. Ismail, M. Y. and M. Inam, "Performance improvement of reflectarrays based on embedded slots configurations," Progress In Electromagnetics Research C, Vol. 14, 67-78, 2010.
doi:10.2528/PIERC10041904        Google Scholar

14. Huang, J., "Microstrip reflectarray," Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 2, 612-615, Jun. 1991.        Google Scholar

15. Zubir, F., M. K. A. Rahim, O. Ayob, A. Wahid, and H. A. Majid, "Design and analysis of microstrip reflectarray antenna with Minowski shape radiating element," Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010.
doi:10.2528/PIERB10071208        Google Scholar

16. Jamaluddin, M. H., R. Gillard, R. Sauleau, L. Le Coq, X. Castel, X. Benzerga, and T. Koleck, "Design, fabrication and characterization of a dielectric resonator antenna reflectarray in Ka-band," Progress In Electromagnetics Research B, Vol. 25, 261-275, 2010.
doi:10.2528/PIERB10071306        Google Scholar

17. Milon, M. A., R. Gillard, and H. Legay, "Rigorous analysis of the reflectarray radiating elements: Characterisation of the specular reflection effect and the mutual coupling effect," 29th ESA Antenna Workshop on Multiple Beams and Reconfigurable Antennas, Noordwijk, The Netherlands, Apr. 18-20, 2007.

18. Targonski, S. D. and D. M. Pozar, "Analysis and design of a microstrip reflectarray using patches of variable size," IEEE Symp. Antennas Propagation, Vol. 3, 1820-1823, Jun. 1994.        Google Scholar

19. Veneri, F., G. Angiulli, and G. Di Massa, "Design of microstrip reflectarray using data from isolated patch analysis," Microw. Opt. Technol. Lett., Vol. 34, No. 6, 411-413, 2002.
doi:10.1002/mop.10479        Google Scholar

20. Jamaluddin, M. H., R. Gillard, R. Sauleau, P. Dumon, and L. Le Coq, "Reflectarray element based on strip-loaded dielectric resonator antenna," IET Electronics Letters, Vol. 44, No. 11, 664-665, May 22, 2008.
doi:10.1049/el:20080346        Google Scholar

21. Yang, H. Y. D., "Analysis of microstrip dipoles on planar artificial periodic dielectric structures," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 10, 1373-1388, 2004.
doi:10.1163/1569393042954938        Google Scholar

22. Bhattacharyya, A. K., "Floquet modal based approach for mutual coupling between elements in array environment," IEEE International Symp. on Antennas and Propagation Society, Vol. 3, 1908-1911, 1996.        Google Scholar

23. Yun, Z. and M. F. Iskander, "Implementation of Floquet boundary conditions in FDTD analysis of periodic phased array antennas with skewed grid," Electromagnetics, Vol. 20, 445-452, 2010.        Google Scholar

24. Muhn, S.-J. and W.-S. Park, "Electromagnetic transmission through periodic narrow slit with a finite thickness," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1930-1939, 2011.
doi:10.1163/156939311798072135        Google Scholar

25. Chen, S.-W., X.-P. Liang, and K. A. Zaki, "Propagation in periodically loaded dielectric waveguides," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 7, 669-683, 1991.        Google Scholar

26. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique incidence case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 12, 1595-1607, 1993.
doi:10.1163/156939393X00020        Google Scholar