1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, Boston, MA, 2000. Google Scholar
3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075 Google Scholar
4. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method-," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007 Google Scholar
5. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605 Google Scholar
6. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012.
doi:10.2528/PIERM11111803 Google Scholar
7. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TEz waves," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2963-2972, Nov. 2004.
doi:10.1109/TAP.2004.835142 Google Scholar
8. Sun, G. and C. W. Trueman, "E±cient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, May 2006.
doi:10.1109/TMTT.2006.873639 Google Scholar
9. Rouf, H. K., F. Costen, S. G. Garcia, S. Fujino, "On the solution of 3-D frequency dependent Crank-Nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, Jan. 2009.
doi:10.1163/156939309790109261 Google Scholar
10. Xu, K., Z. Fan, D. Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606 Google Scholar
11. Fu, , W. and E. L. Tan, "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, Sep. 2004.
doi:10.1049/el:20046040 Google Scholar
12. Fu, W. and E. L. Tan, "Compact higher-order split-step FDTD method," Electron. Lett., Vol. 41, No. 7, 397-399, Mar. 2005.
doi:10.1049/el:20057927 Google Scholar
13. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Effcient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381 Google Scholar
14. Do Nascimento, V. E., J. A. Cuminato, F. L. Teixeira, and B.-H. V. Borges, "Unconditionally stable finite-difference time-domain method based on the locally-one-dimensional technique," Proc. XXII Simposio Brasileiro de Telecomunicacoes, 288-291, Campinas, SP, Brazil, Sep. 2005. Google Scholar
15. Liang, F. and G. Wang, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2035-2043, Jan. 2008.
doi:10.1163/156939308787538017 Google Scholar
16. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166 Google Scholar
17. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally-stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544 Google Scholar
18. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512 Google Scholar
19. Chu, Q. X. and Y. D. Kong, "High-order accurate FDTD method based on split-step scheme for solving Maxwell's equations," Microwave. Optical Technol. Lett., Vol. 51, No. 2, 562-565, Feb. 2009.
doi:10.1002/mop.24100 Google Scholar
20. Chu, , Q. X. and Y. D. Kong, "Three new unconditionally-Stable FDTD methods with high-order accuracy," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2675-2682, Sep. 2009.
doi:10.1109/TAP.2009.2027045 Google Scholar
21. Kong, Y. D. and Q. X. Chu, "Unconditionally-stable FDTD methods with high-order accuracy in two and three dimensions," IET Microwaves, Antennas Propag., Vol. 4, No. 10, 1605-1616, Nov. 2010.
doi:10.1049/iet-map.2009.0222 Google Scholar
22. Kong, Y. D. and Q. X. Chu, "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.
doi:10.1109/TAP.2011.2161543 Google Scholar
23. Pereda, J. A., F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "A new algorithm for the incorporation of arbitrary linear lumped networks into FDTD simulators," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 6, 943-949, Jun. 1999.
doi:10.1109/22.769330 Google Scholar
24. Chen, Z.-H. and Q.-X. Chu, "FDTD modeling of arbitrary linear lumped networks using piecewise linear recursive convolution technique," Progress In Electromagnetics Research, Vol. 73, 327-341, 2007.
doi:10.2528/PIER07042002 Google Scholar
25. Su, D. Y., D.-M. Fu, and Z.-H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
doi:10.2528/PIER07120902 Google Scholar
26. Silva-Macedo, J. A., M. A. Romero, and B.-H. V. Borges, "An extended FDTD method for the analysis of electromagnetic field rotators and cloaking devices," Progress In Electromagnetics Research, Vol. 87, 183-196, 2008.
doi:10.2528/PIER08101507 Google Scholar
27. Thiel, W. and L. P. B. Katehi, "Some aspects of stability and numerical dissipation of the finite-difference time-domain (FDTD) technique including passive and active lumped elements," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 9, 2159-2165, Sep. 2002.
doi:10.1109/TMTT.2002.802330 Google Scholar
28. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements --- A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901 Google Scholar
29. Pereda, J. A., A. Vegas, and A. Prieto, "Study on the stability and numerical dispersion of the FDTD technique including lumped inductors," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 1052-1058, Mar. 2004.
doi:10.1109/TMTT.2004.823589 Google Scholar
30. Fu, W. and E. L. Tan, "Unconditionally stable FDTD technique including passive lumped elements," International RF and Microwave Conference Proceedings, 277-280, Putrajaya,Malaysia, Sep. 2006. Google Scholar
31. Fu, W. and E. L. Tan, "Unconditionally stable ADI-FDTD method including passive lumped elements," IEEE Trans. , Vol. 48, No. 4, 661-668, Nov. 2006. Google Scholar
32. Chu, Q. X. and Z. H. Chen, "Numerical dispersion of the ADI-FDTD technique including lumped models," IEEE MTT-S Int. Mcro. Sym. Dig., 729-732, Honolulu, Unite States, Jun. 2007. Google Scholar
33. Lin, G. and Y. G. Zhou, "Extending the three-dimensional LOD-FDTD method to lumped load and voltage source with impedance," International Conference on Microwave Technology and Computational Electromagnetics, 341-343, Beijing, China,2009. Google Scholar
34. Lee, J. and B. Fornberg, "A split step approach for the 3-D Maxwell's equations," J. Comput. Appl. Math., Vol. 158, 485-505, Mar. 2003.
doi:10.1016/S0377-0427(03)00484-9 Google Scholar
35. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 2, 377-381, Feb. 2001.
doi:10.1109/22.903100 Google Scholar