Vol. 44
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-20
Study on the Stability and Numerical Error of the Four-Stages Split-Step FDTD Method Including Lumped Inductors
By
Progress In Electromagnetics Research B, Vol. 44, 117-135, 2012
Abstract
The stability and numerical error of the extended four-stages split-step finite-difference time-domain (SS4-FDTD) method including lumped inductors are systematically studied. In particular, three different formulations for the lumped inductor are analyzed: the explicit, the semi-implicit, and the implicit schemes. Then, the numerical stability of the extended SS4-FDTD method is analyzed by using the von Neumann method, and the results show that the proposed method is unconditionally-stable in the semi-implicit and the implicit schemes, whereas it is conditionally stable in the explicit scheme, which its stability is related to both the mesh size and the values of the element. Moreover, the analysis of the numerical error of the extended SS4-FDTD is studied, which is based on the Norton equivalent circuit. Theoretical results show that: 1) the numerical impedance is a pure imaginary for the explicit scheme; 2) the numerical equivalent circuit of the lumped inductor is an inductor in parallel with a resistor for the semi-implicit and implicit schemes. Finally, a simple microstrip circuit including a lumped inductor is simulated to demonstrate the validity of the theoretical results.
Citation
Yong-Dan Kong, Qing-Xin Chu, and Rong-Lin Li, "Study on the Stability and Numerical Error of the Four-Stages Split-Step FDTD Method Including Lumped Inductors," Progress In Electromagnetics Research B, Vol. 44, 117-135, 2012.
doi:10.2528/PIERB12062008
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693        Google Scholar

2. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, Boston, MA, 2000.        Google Scholar

3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075        Google Scholar

4. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method-," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007        Google Scholar

5. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605        Google Scholar

6. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012.
doi:10.2528/PIERM11111803        Google Scholar

7. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TEz waves," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2963-2972, Nov. 2004.
doi:10.1109/TAP.2004.835142        Google Scholar

8. Sun, G. and C. W. Trueman, "E±cient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, May 2006.
doi:10.1109/TMTT.2006.873639        Google Scholar

9. Rouf, H. K., F. Costen, S. G. Garcia, S. Fujino, "On the solution of 3-D frequency dependent Crank-Nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, Jan. 2009.
doi:10.1163/156939309790109261        Google Scholar

10. Xu, K., Z. Fan, D. Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606        Google Scholar

11. Fu, , W. and E. L. Tan, "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, Sep. 2004.
doi:10.1049/el:20046040        Google Scholar

12. Fu, W. and E. L. Tan, "Compact higher-order split-step FDTD method," Electron. Lett., Vol. 41, No. 7, 397-399, Mar. 2005.
doi:10.1049/el:20057927        Google Scholar

13. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Effcient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381        Google Scholar

14. Do Nascimento, V. E., J. A. Cuminato, F. L. Teixeira, and B.-H. V. Borges, "Unconditionally stable finite-difference time-domain method based on the locally-one-dimensional technique," Proc. XXII Simposio Brasileiro de Telecomunicacoes, 288-291, Campinas, SP, Brazil, Sep. 2005.        Google Scholar

15. Liang, F. and G. Wang, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2035-2043, Jan. 2008.
doi:10.1163/156939308787538017        Google Scholar

16. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166        Google Scholar

17. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally-stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544        Google Scholar

18. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512        Google Scholar

19. Chu, Q. X. and Y. D. Kong, "High-order accurate FDTD method based on split-step scheme for solving Maxwell's equations," Microwave. Optical Technol. Lett., Vol. 51, No. 2, 562-565, Feb. 2009.
doi:10.1002/mop.24100        Google Scholar

20. Chu, , Q. X. and Y. D. Kong, "Three new unconditionally-Stable FDTD methods with high-order accuracy," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2675-2682, Sep. 2009.
doi:10.1109/TAP.2009.2027045        Google Scholar

21. Kong, Y. D. and Q. X. Chu, "Unconditionally-stable FDTD methods with high-order accuracy in two and three dimensions," IET Microwaves, Antennas Propag., Vol. 4, No. 10, 1605-1616, Nov. 2010.
doi:10.1049/iet-map.2009.0222        Google Scholar

22. Kong, Y. D. and Q. X. Chu, "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.
doi:10.1109/TAP.2011.2161543        Google Scholar

23. Pereda, J. A., F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, "A new algorithm for the incorporation of arbitrary linear lumped networks into FDTD simulators," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 6, 943-949, Jun. 1999.
doi:10.1109/22.769330        Google Scholar

24. Chen, Z.-H. and Q.-X. Chu, "FDTD modeling of arbitrary linear lumped networks using piecewise linear recursive convolution technique," Progress In Electromagnetics Research, Vol. 73, 327-341, 2007.
doi:10.2528/PIER07042002        Google Scholar

25. Su, D. Y., D.-M. Fu, and Z.-H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
doi:10.2528/PIER07120902        Google Scholar

26. Silva-Macedo, J. A., M. A. Romero, and B.-H. V. Borges, "An extended FDTD method for the analysis of electromagnetic field rotators and cloaking devices," Progress In Electromagnetics Research, Vol. 87, 183-196, 2008.
doi:10.2528/PIER08101507        Google Scholar

27. Thiel, W. and L. P. B. Katehi, "Some aspects of stability and numerical dissipation of the finite-difference time-domain (FDTD) technique including passive and active lumped elements," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 9, 2159-2165, Sep. 2002.
doi:10.1109/TMTT.2002.802330        Google Scholar

28. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements --- A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901        Google Scholar

29. Pereda, J. A., A. Vegas, and A. Prieto, "Study on the stability and numerical dispersion of the FDTD technique including lumped inductors," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 1052-1058, Mar. 2004.
doi:10.1109/TMTT.2004.823589        Google Scholar

30. Fu, W. and E. L. Tan, "Unconditionally stable FDTD technique including passive lumped elements," International RF and Microwave Conference Proceedings, 277-280, Putrajaya,Malaysia, Sep. 2006.        Google Scholar

31. Fu, W. and E. L. Tan, "Unconditionally stable ADI-FDTD method including passive lumped elements," IEEE Trans. , Vol. 48, No. 4, 661-668, Nov. 2006.        Google Scholar

32. Chu, Q. X. and Z. H. Chen, "Numerical dispersion of the ADI-FDTD technique including lumped models," IEEE MTT-S Int. Mcro. Sym. Dig., 729-732, Honolulu, Unite States, Jun. 2007.        Google Scholar

33. Lin, G. and Y. G. Zhou, "Extending the three-dimensional LOD-FDTD method to lumped load and voltage source with impedance," International Conference on Microwave Technology and Computational Electromagnetics, 341-343, Beijing, China,2009.        Google Scholar

34. Lee, J. and B. Fornberg, "A split step approach for the 3-D Maxwell's equations," J. Comput. Appl. Math., Vol. 158, 485-505, Mar. 2003.
doi:10.1016/S0377-0427(03)00484-9        Google Scholar

35. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 2, 377-381, Feb. 2001.
doi:10.1109/22.903100        Google Scholar