1. Federal Communications Commission "Revision of Part 15 of the Commission's rules regarding ultra-wideband transmission systems," Tech. Rep., ET-Docket 98-153, FCC02-48, Apr. 2002. Google Scholar
2. Hsu, C., F. Hsu, and J. Kuo, "Microstrip bandpass fulters for ultra-wideband (UWB) wireless communications," International Microwave Symposium, Long Beach, CA, USA, Jun. 2005. Google Scholar
3. Li, K., D. Kurita, and T. Matsui, "An ultra-wideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure," IEEE MTT-S Int. Dig., 675-678, Jun. 2005. Google Scholar
4. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, Nov. 2005. Google Scholar
5. Wang, H. and L. Zhu, "Ultra-wideband bandpass filter using back to back microstrip to CPW transition structure," Electronics Letters, Vol. 41, No. 24, Nov. 24, 2005. Google Scholar
6. Wang, H., L. Zhu, and W. Menzel, "Ultra-wideband bandpass filter with hybrid microstrip/CPW structure," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 12, 844-846, Dec. 2005.
doi:10.1109/LMWC.2005.860016 Google Scholar
7. Li, R., S. Sun, and L. Zhu, "Synthesis design of ultra-wideband bandpass ¯lters with designable transmission poles," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, May 2009. Google Scholar
8. An, J., G.-M. Wang, W.-D. Zeng, and L.-X. Ma, "UWB filter using defected ground structure of Von Koch fractal shape slot," Progress In Electromagnetics Research Letters, Vol. 6, 61-66, 2009.
doi:10.2528/PIERL08121309 Google Scholar
9. Sun, S. and L. Zhu, "Capacitive ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 8, Aug. 2006.
doi:10.1109/LMWC.2006.879492 Google Scholar
10. Yang, G. M., R. Jin, C. Victoria, V. G. Harris, and N. X. Sun, "Small UWB bandpass filter with notched band," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 3, Mar. 2008. Google Scholar
11. Huang, J.-Q., Q.-X. Chu, and C.-Y. Liu, "Compact UWB filter based on surface-coupled structure with dual notched bands," Progress In Electromagnetics Research, Vol. 106, 311-319, 2010.
doi:10.2528/PIER10062203 Google Scholar
12. Chen, J. Z., G.-C. Wu, and C.-H. Liang, "A novel compact ultra-wideband bandpass filter with simultaneous narrow notched band and out-of-band performance improvement," Progress In Electromagnetics Research Letters, Vol. 24, 35-42, 2011. Google Scholar
13. Ting, S. W., K. W. Tam, and R. P. Martins, "Miniaturized microstrip lowpass filter with wide stopband using double equilateral U-Shaped defected ground structure," IEEE Microwave and Wireless Component Letters, Vol. 16, No. 5, 240-242, May 2006.
doi:10.1109/LMWC.2006.873592 Google Scholar
14. Zeland Software Inc., IE3D 14.0, , 2008. Google Scholar
15. Hong, J. S. and B. M. Karyamapudi, "A general circuit model for defected ground structures in planar transmission lines," IEEE Microwave and Wireless Component Letters, Vol. 15, No. 10, 706-708, Oct. 2005.
doi:10.1109/LMWC.2005.856832 Google Scholar
16. Balalem, A., A. R. Ali, J. Machac, and A. Omar, "Quasi-elliptic microstrip low-pass filters using an interdigital DGS slot," IEEE Microwave and Wireless Component Letters, Vol. 17, No. 8, 586-588, Aug. 2007.
doi:10.1109/LMWC.2007.901769 Google Scholar