1. Scholz, C. H., "Microfracturing and the inelastic deformation of rock in compression," J. Geophys. Res., Vol. 73, 1417, 1968.
doi:10.1029/JB073i004p01417 Google Scholar
2. Carpinteri, A. and G. Lacidogna, "Damage monitoring of an historical masonry building by the acoustic emission technique," Materials and Structures (RILEM), Vol. 39, 161, 2006.
doi:10.1617/s11527-005-9043-2 Google Scholar
3. Carpinteri, A., G. Lacidogna, and G. Niccolini, "Critical behavior in concrete structures and damage localization by Acoustic Emission," Key Eng. Mat., Vol. 312, 305, 2006.
doi:10.4028/www.scientific.net/KEM.312.305 Google Scholar
4. Lacidogna, G., A. Carpinteri, A. Manuello, G. Durin, G. Niccolini, and A. Agosto, "Acoustic and electromagnetic emissions as precursor phenomena in failure processes,", 2010, Strain doi: 10.1111/j.1475-1305.2010.00750.x. Google Scholar
5. Carpinteri, A., G. Lacidogna, A. Manuello, G. Niccolini, A. Schiavi, and A. Agosto, "Mechanical and electromagnetic emissions related to stress-induced cracks," Experimental Techniques, Vol. 36, No. 3, 53, 2012.
doi:10.1111/j.1747-1567.2011.00709.x Google Scholar
6. Warwick, J. W., C. Stoker, and T. R. Meyer, "Radio emission associated with rock fracture: Possible application to the great chilean earthquake of May 22, 1960," J. Geophys. Res., Vol. 87, 2851, 1982.
doi:10.1029/JB087iB04p02851 Google Scholar
7. Matsuda, T., C. Yamanaka, and M. Ikeya, "Behavior of stress-induced charges in cement containing quartz crystals," Phys. Stat. Sol. A, Vol. 2, 359, 2001.
doi:10.1002/1521-396X(200104)184:2<359::AID-PSSA359>3.0.CO;2-4 Google Scholar
8. Klyuev, V. A., A. G. Lipson, Y. P. Toporov, A. D. Aliev, A. E. Chlyk, and B. V. Deriaghin, "Charactericescoye islucenye pri rasruscenii tverdikh tel i naruscenii adgesionni sviasei b vacuume," Dokl. Acad. Nauk SSSR, Vol. 279, 415, Russia, 1984. Google Scholar
9. Mognaschi, R. and U. Zezza, "Detection of electromagnetic emissions from fracture of rocks and building stones under stress," 5th International Congress on Restoration of Architectural Heritage, 553-562, Florence 2000. Google Scholar
10. Sleeman, R. and T. van Eck, "Robust automatic P-phase picking: An on-line implementation in the analysis of broadband seismogram recordings," Physics of the Earth and Planetary Interiors, Vol. 113, 265, 1999.
doi:10.1016/S0031-9201(99)00007-2 Google Scholar
11. Earle, P. and P. M. Shearer, "Characterization of global seismograms using an automatic-picking algorithm," Bull. Seismol. Soc. Am., Vol. 84, 366, 1994. Google Scholar
12. Tong, C. and B. L. N. Kennett, "Automatic seismic event recognition and later phase identification for broadband seismograms," Bull. Seismol. Soc. Am., Vol. 86, 1896, 1996. Google Scholar
13. Withers, M., et al. "A comparison of select trigger algorithms for automated global seismic phase and event location," Bull. Seismol. Soc. Am., Vol. 88, 95, 1998. Google Scholar
14. Anant, K. S. and F. U. Dowla, "Wavelet transform methods for phase identification in three-component seismograms," Bull. Seismol. Soc. Am., Vol. 87, 1598, 1997. Google Scholar
15. Kurz, J., C. Grosse, and H. Reinhardt, "Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete," Ultrasonics, Vol. 43, 538, 2005.
doi:10.1016/j.ultras.2004.12.005 Google Scholar
16. Zhang, H., C. Thurber, and C. Rowe, "Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings," Bull. Seismol. Soc. Am., Vol. 93, 1904, 2003.
doi:10.1785/0120020241 Google Scholar
17. Hafez, A. G., T. A. Khan, and T. Kohda, "Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks," Digital Signal Proc., Vol. 20, 715, 2010.
doi:10.1016/j.dsp.2009.10.002 Google Scholar
18. Akaike, H., "A new look at the statistical model identification," Trans. Automat. Contr., Vol. 19, 716, 1974.
doi:10.1109/TAC.1974.1100705 Google Scholar
19. Yokota, T., S. Zhou, M. Mizoue, and I. Nakamura, "An automatic measurement of arrival time of seismic waves and its application to an on-line processing system," Bull. Earthq. Res. Inst., Vol. 55, 449, 1981. Google Scholar
20. Maeda, N., "A method for reading and checking phase times in auto-processing system of seismic wave data," Zisin, Vol. 38, 365, 1985. Google Scholar
21. Verkaeren, J. and P. Bartholome, "Petrology of the San Leone magnetite skarn deposit (S. W. Sardinia)," Economic Geology, Vol. 74, No. 53, 1979. Google Scholar
22. Santi, P., et al. "Leucite phonolite millstones from the Orvieto production centre: New data and insights into the roman trade," Periodico di Mineralogia, Vol. 73, No. 3, 57, 2004. Google Scholar
23. Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat, "Depolarization in percussion drilling of Solenhofen limestone," J. Appl. Phys., Vol. 97, 014908-1, 1997. Google Scholar
24. Frid, V., A. Rabinovitch, and D. Bahat, "Crack velocity measurement by induced electromagnetic radiation," Phys. Lett. A, Vol. 356, 160, 2006.
doi:10.1016/j.physleta.2006.03.024 Google Scholar
25. Arrighetti, W., P. DeCupis, and G. Gerosa, "Electromagnetic radiation from moving fractal sources: A plane-wave spectral approach," Progress In Electromagnetics Research, Vol. 58, 1-19, 2006.
doi:10.2528/PIER05072001 Google Scholar
26. Pirhadi, A. and M. Hakkak, "An analytical investigation of the radiation characteristics of infinitesimal dipole antenna embedded in partially reflective surfaces to obtain high directivity," Progress In Electromagnetics Research, Vol. 65, 137-155, 2006.
doi:10.2528/PIER06081501 Google Scholar
27. Chen, Z. and K.-M. Huang, "Using the oscillating dipoles model to study the electromagnetic radiation induced by fracture of rocks," Progress In Electromagnetics Research M, Vol. 14, 221-231, 2010.
doi:10.2528/PIERM10041802 Google Scholar