1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466
2. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies --- A review," IEEE Transactions on Instrumentation and Measurement, Vol. 29, 176-183, 1980.
doi:10.1109/TIM.1980.4314902 Google Scholar
3. Adous, M., P. Queffelec, and L. Laguerre, "Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials," Meas. Sci. Technol., Vol. 17, 2241-2246, 2006.
doi:10.1088/0957-0233/17/8/026 Google Scholar
4. Skierucha, W. and A. Wilczek, "A FDR sensor for measuring complex soil dielectric permittivity in the 10-500MHz frequency range," Sensors, Vol. 10, 3314-3329, 2010.
doi:10.3390/s100403314 Google Scholar
5. Pozar, D. M., Microwave Engineering, Ch. 3, John Wiley & Sons, 1998.
6. Baker-Jarvis, J., "Transmission/reflection and short-circuit line methods," NIST Technical Note 1341, 1990. Google Scholar
7. Maxwell-Garnett, J. C., "Colours in metal glasses and in metallic films," Phil. Trans. R. Soc. London, Vol. 203, 385-420, 1904.
doi:10.1098/rsta.1904.0024 Google Scholar
8. Cai, W. and V. M. Shalaev, "Optical Metamaterials: Fundamentals and Applications," Ch. 2, Springer, 2010. Google Scholar
9. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey, 2008.
10. Wen, W., X. Huang, S. Yang, K. Lu, and P. Sheng, "The giant electrorheological effect in suspensions of nanoparticles," Nature Materials, Vol. 2, 727-730, 2003.
doi:10.1038/nmat993 Google Scholar
11. Philip, J., P. D. Shima, and B. Raj, "Nanofluid with tunable thermal properties," Appl. Phys. Lett., Vol. 92, 043108, 2006.
doi:10.1063/1.2838304 Google Scholar
12. Shima, P. D. and J. Philip, "Tuning of thermal conductivity and rheology of nanofluids using an external stimulus," J. Phys. Chem. C, Vol. 115, 20097-20104, 2011.
doi:10.1021/jp204827q Google Scholar
13. Hu, X., C. T. Chan, J. Zi, M. Li, and K. M. Ho, "Diamagnetic response of metallic photonic crystals at infrared and visible frequencies," Phys. Rev. Lett., Vol. 96, 223901, 2006.
doi:10.1103/PhysRevLett.96.223901 Google Scholar
14. Gao, Y., J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, "Optical negative refraction in ferrofluids with magnetocontrollablility," Phys. Rev. Lett., Vol. 104, 034501, 2010.
doi:10.1103/PhysRevLett.104.034501 Google Scholar
15. Tao, H., et al. "Metamaterials on paper as a sensing platform Advanced Materials,", Vol. 23, 3197-3201, 2011. Google Scholar
16. Wada, S., H. Yasuno, T. Hoshina, S. M. Nam, H. Kakemoto, and T. Tsurumi, "Preparation of nm-sized barium titanate fine particles and their powder dielectric properties," Jpn. J. Appl. Phys., Vol. 42, 6188-6195, 2003.
doi:10.1143/JJAP.42.6188 Google Scholar
17. Hung, D. S., P. C. Chiang, C. W. Lee, C. S. Ho, S. H. Chieng, and Y. D. Yao, "Observation of effective permittivity of water-dispersible FePt nanoparticles at microwave frequencies," IEEE Transactions on Magnetics, Vol. 43, 879-881, 2007.
doi:10.1109/TMAG.2006.888488 Google Scholar