1. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Trans. Ant. Prop., Vol. 35, No. 3, 7-12. Google Scholar
2. Seo, S. M. and J.-F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Trans. Magn., Vol. 41, 1476-1479, May 2005. Google Scholar
3. Zhang, B., G. Xiao, J. Mao, and Y. Wang, "Analyzing large-scale non-periodic arrays with synthetic basis functions," IEEE Trans. Ant. Prop., Vol. 58, No. 11, Nov. 2010. Google Scholar
4. Prakash, V. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Micro. Opt. Tech. Letters, Vol. 36, Jan. 2003. Google Scholar
5. Hu, L., R. Mittra, and L.-W. Li, "lectromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive integral methods," IEEE Trans. Ant. Prop., Vol. 58, 3086-3090, Sep. 2010.
doi:10.1109/TAP.2010.2052563 Google Scholar
6. Du, K. and R. Mittra, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetic Research, Vol. 6, 307-336, 2006. Google Scholar
7. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Ant. Prop., Vol. 56, No. 11, 3440-3451, Nov. 2008.
doi:10.1109/TAP.2008.2005471 Google Scholar
8. Xiao, K., F. Zhao, S. L. Chai, J. J. Mao, and L.-W. Li, "Scattering analysis of periodic arrays using combined CBF/P-FFT method," Progress In Electromagnetic Research, Vol. 115, 131-146, 2011. Google Scholar
9. Rashidi, A., H. Mosallaei, and R. Mittra, "Scattering analysis of plasmonic nanorod antennas: A novel numerically efficient computational scheme utilizing macro basis functions," Journal of Applied Physics, Vol. 109, 2011. Google Scholar
10. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Phys. Rev., Vol. 56, 99-107, Jul. 1939. Google Scholar
11. Yla-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects," IEEE Trans. Ant. Prop., Vol. 53, No. 3, 1168-1173, Mar. 2005.
doi:10.1109/TAP.2004.842640 Google Scholar
12. Taskinen, M., "On the implementation and formulation of electromagnetic surface integral equations," , Ph.D. Thesis, 2006. Google Scholar
13. Solin, P. and K. Segeth, Higher-order Finite Element Methods, Chapman & Hall, 2004.
doi:10.1109/TAP.2004.831292
14. Graglia, R. D. and G. Lombardi, "Singular higher order complete vector bases for finite methods," IEEE Trans. Ant. Prop., Vol. 52, No. 7, 1672-1685, Jul. 2004.
doi:10.1103/PhysRevB.6.4370 Google Scholar
15. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972. Google Scholar
16. Stratton, J. A., Electromagnetic Theory, McGraw Hill, 1941.
17. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 2008. Google Scholar
18. Ghadarghadr, S. and H. Mosallaei, "Coupled dielectric nanoparticles manipulating metamaterials optical characteristics," IEEE Trans. Nanotechnol., Vol. 8, 585-594, Sep. 2009.
doi:10.1109/TAP.2010.2103022 Google Scholar
19. Ahmadi, A., S. Saadat, and H. Mosallaei, "Resonance and Q performance of ellipsoidal eng subwavelength radiators," IEEE Trans. Ant. Prop., Vol. 59, No. 3, 706-713, Mar. 2011. Google Scholar
20. Biagioni, P., J.-S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Rep. Prog. Phys., Vol. 75, 2012.
doi:10.1021/nn100993t Google Scholar
21. Lipomi, D. J., M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, "Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning," ACS Nano, Vol. 4, No. 7, 4017-4026, 2010. Google Scholar