Vol. 35
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-09-20
Active WDM Filter on Dilute Nitride Quantum Well Photonic Band Gap Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012
Abstract
A defective Photonic Band Gap device based on dilute nitrides is proposed as a high performance active wavelength filter for wavelength division multiplexing applications. The analyzed structure is made of GaInNAs-GaInAs multi quantum well ridge waveguides in which a geometrical defect in the periodic lattice induces selective transmission spectral regions centered at different wavelengths inside the photonic band gap. The multichannel filter performances are evaluated as a function of both the defect length and the injected current value. The analysis is performed by using proprietary codes, based on the Bidirectional Beam Propagation Method with the Method of Lines introducing the rate equations. Highly selective 11-channel active filter with minimum value of the bandwidth at half-height Δλ = 0.105 nm with gain G = 16.51 dB has been assessed.
Citation
Giovanna Calo, Dimitris Alexandropoulos, and Vincenzo Petruzzelli, "Active WDM Filter on Dilute Nitride Quantum Well Photonic Band Gap Waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.
doi:10.2528/PIERL12072401
References

1. Kumar, A., B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, "Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012.

2. Wu, C.-J., M.-H. Lee, W.-H. Chen, and T.-J. Yang, "A mid-infrared multichanneled filter in a photonic crystal heterostructure containing negative-permittivity materials," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1360-1371, 2011.

3. Grande, M., G. Calo, V. Petruzzelli, and A. D'Orazio, "High-Q photonic crystal nanobeam cavity based on a silicon nitride membrane incorporating fabrication imperfections and a low-index material layer," Progress In Electromagnetics Research B, Vol. 37, 191-204, 2012.
doi:10.2528/PIERB11101405

4. D'Orazio, A., M. De Sario, V. Marrocco, and V. Petruzzelli, "Photonic crystal drop filter exploiting resonant cavity configuration," IEEE Transactions on Nanotechnology, Vol. 7, No. 1, 10-13, 2008.
doi:10.1109/TNANO.2007.913427

5. D'Orazio, A., M. De Sario, V. Ingravallo, V. Petruzzelli, and F. Prudenzano, "Infiltrated liquid crystal photonic bandgap devices for switching and tunable filtering," Fiber and Integrated Optics, Vol. 22, No. 3, 161-172, 2003.

6. Calo, G., A. Farinola, and V. Petruzzelli, "Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution," Journal of the Optical Society of America B: Optical Physics, Vol. 28, No. 7, 1668-1679, 2011.
doi:10.1364/JOSAB.28.001668

7. D'Orazio, A., M. De Sario, V. Gadaleta, V. Petruzzelli, and F. Prudenzano, "Meander microstrip photonic bandgap filter using a Kaiser tapering window," Electronics Letters, Vol. 37, No. 19, 1165-1167, 2001.
doi:10.1049/el:20010794

8. Park, H. G., J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," EEE J. Quantum Electron., Vol. 38, 1353-1365, 2002.
doi:10.1109/JQE.2002.802951

9. Stomeo, T., F. Prudenzano, M. D. Vittorio, V. Errico, A. Salhi, A. Passaseo, R. Cingolani, and V. Petruzzelli, ",Design and fabrication of active and passive photonic crystal resonators ," Microelectronic Engineering, Vol. 83, No. 4-9, 1823-1825, 2006.
doi:10.1016/j.mee.2006.01.211

10. Matsubara, H., S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, "GaN photonic-crystal surface-emitting laser at blue-violet wavelengths," Science, Vol. 319, 445-447, 2008.
doi:10.1126/science.1150413

11. Lee, P.-T., T.-W. Lu, and K.-U. Sio, "Multi-functional light emitter based on band-edge modes near Γ-point in honeycomb photonic crystal," Journal of Lightwave Technology, Vol. 29, No. 12, 1797-1801, 2011.
doi:10.1109/JLT.2011.2142176

12. Carlone, , G., A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, F. Prudenzano, "Design of double-clad erbium-doped holey fiber amplifier," Journal of Non-crystalline Solids, Vol. 351, No. 21-23, 1840-1845, 2005.
doi:10.1016/j.jnoncrysol.2005.04.025

13. Prudenzano, F., L. Mescia, A. D'Orazio, M. De Sario, V. Petruzzelli, A. Chiasera, and M. Ferrari, "Optimization and characterization of rare-earth-doped photonic-crystal-fiber amplifier using genetic algorithm," Journal of Lightwave Technology, Vol. 25, No. 8, 2135-2142, 2007.
doi:10.1109/JLT.2007.901331

14. Wang, Z.-Y., X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, "Photonic crystal narrow filters with negative refractive Photonic crystal narrow filters with negative refractive," Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.
doi:10.2528/PIER07121002

15. Alexandropoulos, D., M. J. Adams, Z. Hatzopoulos, and D. Syvridis, "Proposed scheme for polarization insensitive GaInNAs-based semiconductor optical amplifis," IEEE J. Quantum Electron., Vol. 41, 817-822, 2005.
doi:10.1109/JQE.2005.847551

16. Calo, G., D. Alexandropoulos, A. D'Orazio, and V. Petruzzelli, "Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides," Physica Status Solidi (B) Basic Research, Vol. 248, No. 5, 1212-1215, 2011.
doi:10.1002/pssb.201000782

17. D'Orazio, A., M. De Sario, V. Petruzzelli, and F. Prudenzano, "Bidirectional beam propagation method based on the method of lines for the analysis of photonic band gap structures," Opt. Quantum Electron., Vol. 35, 629-640, 2003.
doi:10.1023/A:1023955615239

18. Calo, G., A. D'Orazio, M. Grande, V. Marrocco, and V. Petruzzelli, "Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching," IEEE J. Quantum Electron., Vol. 47, No. 2, 172-181, 2011.
doi:10.1109/JQE.2010.2053838

19. Calo, G., V. Petruzzelli, L. Mescia, and F. Prudenzano, "Study of gain in photonic band gap active InP waveguides," Journal of the Optical Society of America B, Vol. 26, 2414-2422, 2009.
doi:10.1364/JOSAB.26.002414