1. Conciauro, G., et al. "Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem," IEEE Trans. Microwave Theory Techniques,, Vol. 32, 1495-1504, 1984.
doi:10.1109/TMTT.1984.1132880 Google Scholar
2. Accatino, L., et al. "Elliptical cavity resonators for dual-mode narrowband filters," IEEE Trans. Microwave Theory Techniques, 2393-2401, 1997.
doi:10.1109/22.643850 Google Scholar
3. Wexler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Trans. Microwave Theory Techniques, Vol. 15, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521 Google Scholar
4. Chan, K. L. and S. R. Judah, "Mode-matching analysis of a waveguide junction formed by a circular and a larger elliptic waveguide," IEE Proc. Microw. Antennas Propag, Vol. 145, 123-127, 1998.
doi:10.1049/ip-map:19981216 Google Scholar
5. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., Ch. 7, Wiley-IEEE Press, 2001.
6. Mazzarella, G., G. Montisci, and , "Accurate modeling of coupling junctions in dielectric covered waveguide slot arrays," Progress In Electromagnetics Research M, Vol. 17, 59-71, 2011. Google Scholar
7. Montisci, G., G. Mazzarella, and G. A. Casula, "Effective analysis of a waveguide longitudinal slot with cavity," IEEE Trans. Antennas Propag., Vol. 60, 3104-3110, 2012.
doi:10.1109/TAP.2012.2196953 Google Scholar
8. Mazzarella, G. and G. Montisci, "Wideband equivalent circuit of a centered-inclined waveguide slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 1, 133-151, 2000.
doi:10.1163/156939300X00671 Google Scholar
9. Casula, G. A., G. Mazzarella, and G. Montisci, "Effective analysis of a microstrip slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1203-1217, 2004.
doi:10.1163/1569393042955333 Google Scholar
10. Mazzarella, G. and G. Montisci, "A rigorous analysis of dielectric-covered narrow longitudinal shunt slots with finite wall thickness," Electromagnetics, Vol. 19, 407-418, 1999.
doi:10.1080/02726349908908660 Google Scholar
11. Mazzarella, G. and G. Montisci, "Accurate characterization of the interaction between coupling slots and waveguide bends in waveguide slot arrays," IEEE Trans. Microwave Theory Techniques, Vol. 48, 1154-1157, 2000.
doi:10.1109/22.848500 Google Scholar
12. Casula, G. A., G. Mazzarella, and G. Montisci, "Effect of the feeding t-junctions in the performance of planar waveguide slot arrays," IEEE Antennas and Wireless Propag. Letters, Vol. 11, 953-956, 2012.
doi:10.1109/LAWP.2012.2213233 Google Scholar
13. Chu, L. J., "Electromagnetic waves in elliptic hollow pipes of metal ," J. Appl. Phys., Vol. 9, 583-591, 1938.
doi:10.1063/1.1710459 Google Scholar
14. Marcuvitz, N., Waveguide Handbook, Peregrinius, 1986.
doi:10.1049/PBEW021E
15. Kretzschmar, J. G., "Wave propagation in hollow conducting elliptical waveguides," IEEE Trans. Microwave Theory Techniques, Vol. 18, 547-554, 1970.
doi:10.1109/TMTT.1970.1127288 Google Scholar
16. Zhang, S. and Y. Chen, "Eigenmodes sequence for an elliptical waveguides with arbitrary ellipticity," IEEE Trans. Microwave Theory Techniques,, Vol. 43, 227-230, 1995.
doi:10.1109/22.362983 Google Scholar
17. Shu, C., "Analysis of elliptical waveguides by differential quadrature method," IEEE Trans. Microwave Theory Techniques, Vol. 48, 319-322, 2000.
doi:10.1109/22.821786 Google Scholar
18. Weiland, T., "Three dimensional resonator mode computation by finite difference method," IEEE Trans. Magn., Vol. 21, 2340-2343, 1985.
doi:10.1109/TMAG.1985.1064178 Google Scholar
19. Fanti , A., G. Mazzarella, and G. Montisci, "Curvilinear vector finite difference approach to the computation of waveguide modes," Advanced Electromagnetics, Vol. 1, 29-37, 2012. Google Scholar
20. Zhao, , Y. J., K. L. Wu, and K. K. M. Cheng, "A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures," IEEE Trans. Microwave Theory Techniques, Vol. 50, 1844-1848, 2002.
doi:10.1109/TMTT.2002.800447 Google Scholar
21. Hwang, J. N., "A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer," IEEE Trans. Microwave Theory Techniques, Vol. 53, 653-659, 2005.
doi:10.1109/TMTT.2004.840569 Google Scholar
22. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the ¯nite di®erence frequency domain method," Progress In Electromagnetics Research,, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104 Google Scholar
23. Podwalski, J., P. Kowalczyk, and M. Mrozowski, "Efficient multiscale finite difference frequency domain analysis using multiple macromodels with compressed boundaries," Progress In Electromagnetics Research, Vol. 126, 463-479, 2012.
doi:10.2528/PIER12012008 Google Scholar
24. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006 Google Scholar
25. Lovranos, C. S. and G. A. Kyriacou, "Eigenvalue analysis of curved waveguides employing an orthogonal curvilinear frequency-domain finite-difference method," IEEE Trans. Microwave Theory Techniques, Vol. 57, 594-611, 2009.
doi:10.1109/TMTT.2009.2013314 Google Scholar
26. Taflove, A., Advances in Computational Electrodynamics --- The FDTD Method, Artech House, 1995.
27. Xiao, S., R. Vahldieck, and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD," IEEE Microwave Guided Wave Lett., Vol. 2, 165-167, 1992.
doi:10.1109/75.134342 Google Scholar
28. Choi, D. H. and W. J. R. Hoefer, "The finite-difference-time-domain method and its applications to eigenvalue problems," IEEE Trans. Microwave Theory Techniques, Vol. 34, 1464-1470, 1986.
doi:10.1109/TMTT.1986.1133564 Google Scholar
29. Fanti, A. and G. Mazzarella, "Finite differences single grid evaluation of TE and TM modes in metallic waveguides," Loughborough Antennas Propag. Conf., 517-520, Loughborough,UK, 2010. Google Scholar
30. Itoh, T., Numerical Techniques for Microwave and Millimeter-wave Passive Structures, Sect. 1.1, Wiley, 1989.
31. Golub, G. H. and C. F. Van Loan, "The Matrix Computations," The Johns Hopkins University Press, Baltimore MD, 1996. Google Scholar