1. Ashby, M. F., A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, 2000.
2. Kovacik, J., P. Tobolka, F. Simancik, J. Banhart, M. F. Ashby, and N. A. Fleck, "Metal foams and foam metal structures," Int. Conf. Metfoam'99, MIT Verlag Bremen, Germany, Jun. 1999. Google Scholar
3. Banhart, J., "Manufacture characterisation and application of cellular metals and metal foams," Progress in Materials Science, Vol. 46, No. 6, 559-632, 2001.
doi:10.1016/S0079-6425(00)00002-5 Google Scholar
4. Deshpande, V. S. and N. A. Fleck, "Isotropic constitutive models for metallic foams," Journal of the Mechanics and Physics of Solids, Vol. 48, 1253-1283, 2000.
doi:10.1016/S0022-5096(99)00082-4 Google Scholar
5. Hanssen, A. G., O. S. Hopperstad, M. Langseth, and H. Ilstad, "Validation of constitutive models applicable to aluminium foams," International Journal of Mechanical Sciences, Vol. 44, 359-406, 2002.
doi:10.1016/S0020-7403(01)00091-1 Google Scholar
6. Lu, T. J. and J. M. Ong, "Characterization of close-celled cellular aluminium alloys," Journal of Materials Science, Vol. 36, 2773-2786, 2001.
doi:10.1023/A:1017977216346 Google Scholar
7. Bart-Smith, H., J. W. Hutchinson, N. A. Fleck, and A. G. Evans, "In°uence of imperfections on the performance of metal foam core sandwich panels," Int. Journal of Solid and Structures, Vol. 39, 4999-5012, 2002.
doi:10.1016/S0020-7683(02)00250-0 Google Scholar
8. Youssef, S., E. Maire, and R. Gaertner, "Finite element modeling of the actual structure of cellular materials determined by X-ray tomography," Acta Materialia, Vol. 53, 719-730, 2005..
doi:10.1016/j.actamat.2004.10.024 Google Scholar
9. Baumeister, J., U. J. Banhart, and M. Weber, "Aluminium foams for transport industry," Materials & Design, Vol. 18, 217-220, 1997.
doi:10.1016/S0261-3069(97)00050-2 Google Scholar
10. Han, F. S. and Z. G. Zhu, "The mechanical behavior of foamed aluminum," Journal of Materials Science, Vol. 34, 291-299, 1999. Google Scholar
11. Catarinucci, L., O. Losito, L. Tarricone, and F. Pagliara, "High added-value EM shielding by using metal-foams: Experimental and numerical characterization," IEEE Int. Symp. on Electromagnetic Compatibility, Vol. 2, 285-289, Aug. 2006. Google Scholar
12. Lovat, G. and P. Burghignoli, "Shielding effectiveness of a metamaterial slab," IEEE Int. Symp. on Electromagnetic Compatibility, 2007. Google Scholar
13. Boyvat, M. and C. Hafner, "Molding the flow of magnetic field with metamaterials: Magnetic field shielding," Progress In Electromagnetics Research, Vol. 126, 303-316, 2012.
doi:10.2528/PIER12022010 Google Scholar
14. Monti, G., L. Catarinucci, and L. Tarricone, "New materials for electromagnetic shielding: Metal foams with plasma properties," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1700-1705, Aug. 2010.
doi:10.1002/mop.25309 Google Scholar
15. Monti, G., L. Catarinucci, and L. Tarricone, "Metal foams for electromagnetic shielding: A plasma model," Proc. of European Conference on Antennas and Propagation, EuCAP 2009, 2123-2126, 2009. Google Scholar
16. Monti, G., L. Catarinucci, and L. Tarricone, "Experimental validation of a plasma model for electromagnetic metal foam shields," IEEE MTT-S International Microwave Symposium Digest, 145-148, 2009. Google Scholar
17. Catarinucci, L., P. Palazzari, and L. Tarricone, "A parallel variable-mesh FDTD tool for the solution of large electromagnetic problems," Proc. of 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005, Denver, CO, 2005. Google Scholar
18. Catarinucci, L., P. Palazzari, and L. Tarricone, "Parallel FDTD simulation of radiobase antennae," Radiation Protection Dosimetry, Vol. 97, No. 4, 409-413, 2001.
doi:10.1093/oxfordjournals.rpd.a006699 Google Scholar
19. Catarinucci, L., P. Palazzari, and L. Tarricone, "A parallel FDTD tool for the solution of large dosimetric problems: An application to the interaction between humans and radiobase antennas," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1755-1758, 2002. Google Scholar
20. Catarinucci, L., P. Palazzari, and L. Tarricone, "Human exposure to the near field of radiobase antennas --- A full-wave solution using parallel FDTD," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 935-940, 2003.
doi:10.1109/TMTT.2003.808695 Google Scholar
21. De Donno, , D., A. Esposito, L. Tarricone, and L. Catarinucci, "Introduction to GPU computing and CUDA programming: A case study on FDTD," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 116-122, 2010.
doi:10.1109/MAP.2010.5586593 Google Scholar
22. Catarinucci, L., P. Palazzari, and L. Tarricone, "On the use of numerical phantoms in the study of the human-antenna interaction problem," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 43-45, 2003. Google Scholar
23. Catarinucci, L. and L. Tarricone, "A parallel graded-mesh FDTD algorithm for human-antenna interaction problems," International Journal of Occupational Safety and Ergonomics, Vol. 15, No. 1, 45-52, 2009. Google Scholar
24. Taflove, A., Computational Electrodynamics: The Finite Difference Time-domain Method, Artech House, Norwood, MA, 1995.
25. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, Jan. 2001.
doi:10.1063/1.1343489 Google Scholar
26. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electronics Review, Vol. 14, No. 3, 179-186, 2006.
doi:10.2478/s11772-006-0023-z Google Scholar
27. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801 Google Scholar
28. Monti, G. and L. Tarricone, "Signal reshaping in a transmission line with negative group velocity behaviour," Microwave Optical Technology Letters, Vol. 51, No. 11, 2627-2633, 2009.
doi:10.1002/mop.24688 Google Scholar
29. Monti, G. and L. Tarricone, "Dispersion analysis of a planar negative group velocity transmission line," Proceedings of the 37th European Microwave Conference, EUMC, 1644-1647, 2007. Google Scholar
30. Monti, G. and L. Tarricon, "Compact broadband monolithic 3-dB coupler by using artificial transmission lines," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2662-2667, 2008.
doi:10.1002/mop.23735 Google Scholar
31. Monti, G. and L. Tarricone, "Reduced-size broadband CRLH-ATL rat-race coupler," Proceedings of the 36th European Microwave Conference, EuMC 2006, 125-128, 2007. Google Scholar
32. Wang, C.-W., T.-G. Ma, and C.-F. Yang, "A new planar artificial transmission line and its applications to a miniaturized butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2792-2801, 2007.
doi:10.1109/TMTT.2007.909474 Google Scholar
33. Monti, G. and L. Tarricone, "Dual-band artificial transmission lines branch-line coupler," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 18, No. 1, 53-62, 2008.
doi:10.1002/mmce.20266 Google Scholar
34. Monti, , G., R. de Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
doi:10.2528/PIER09071109 Google Scholar
35. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstrip line branch-line and rat race coupler couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 10, 2119-2125, Oct. 2003.
doi:10.1109/TMTT.2003.817442 Google Scholar
36. Monti, G. and L. Tarricone, "A novel theoretical formulation for the analysis of the propagation of finite-bandwidth signals in a double-negative slab," Microwave and Optical Technology Letters, Vol. 47, No. 5, 434-439, 2005.
doi:10.1002/mop.21193 Google Scholar
37. Monti, G. and L. Tarricone, "Gaussian pulse expansion of modulated signals in double-negative slab," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2755-2761, 2006.
doi:10.1109/TMTT.2006.874879 Google Scholar
38. Choy, T. C., Effective Medium Theory: Principles and Applications Clarendon, Oxford University Press, New York, 1999.
39. Monti, G. and L. Tarricone, "Dispersion analysis of an negative group velocity medium with MATLAB," Applied Computational Electromagnetics Society Journal, Vol. 24, No. 5, 478-486, Oct. 2009. Google Scholar
40. Monti, G. and L. Tarricone, "On the propagation of a Gaussian pulse in a double-negative slab," Proc. 35th European Microwave Conference, 1419-1422, 2005. Google Scholar
41. . Ann. Phys., Vol. 1, 566, Leipzig, 1900. Google Scholar
42. Ashcroft, N. W. and N. D. Mermin, olid State Physics, Saunders Co., Philadelphia, 1976.
43. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
44. Silveirinha, M. G. and C. A. Fernandes, "Homogenization of 3-D-connected and nonconnected wire metamaterials," IEEE Trans. on Microw. Theory and Techniques, Vol. 53, No. 4, Apr. 2005. Google Scholar
45. Maslovski, S. I., S. A. Tretyakov, and P. A. Belov, "Wire media with negative effective permittivity: A quasi static model," Microwave Optical Technology Letters, Vol. 35, No. 1, 47-51, Oct. 2002.
doi:10.1002/mop.10512 Google Scholar
46. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Norwood, MA, 2003.
47. Lee, J.-Y., J.-H. Lee, H.-S. Kim, N.-W. Kang, and H.-K. Jung, "Effective medium approach of left-handed material using a dispersive FDTD method," IEEE Trans. on Magnetic, Vol. 41, No. 5, 1484-1487, May 2005.
doi:10.1109/TMAG.2005.844566 Google Scholar
48. Moses, C. A. and N. Engheta, "Electromagnetic wave propagation in the wire medium: A complex medium with long thin inclusions," Wave Motion, Vol. 34, No. 3, 239-352, 2001.
doi:10.1016/S0165-2125(01)00095-6 Google Scholar
49. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
50. Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, 1992.
51. "IEEE Standard method for measuring the effectiveness of electromagnetic shielding enclosures,", IEEE Std 299-2006, Feb. 2007. Google Scholar
52. Catarinucci, L., G. Monti, and L. Tarricone, "A parallel-grid-enabled variable-mesh FDTD approach for the analysis of slabs of double-negative metamaterials," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Vol. 3A, 782-785, Washington, Jul. 2005. Google Scholar