Vol. 45
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-10-16
Metal Foams for Electromagnetics: Experimental, Numerical and Analytical Characterization
By
Progress In Electromagnetics Research B, Vol. 45, 1-18, 2012
Abstract
This work focuses on the use of metal foams, a relatively new class of materials, for high added-value electromagnetic (EM) shields. First, the Shielding Effectiveness (SE) of aluminum foam slabs is experimentally evaluated, showing very good shielding properties. Successively, accurate numerical models of metal foams are proposed and used in a proprietary Variable-Mesh Parallel Finite Difference Time Domain code, in order to characterize the EM properties of slabs of such materials. Afterwards, a third approach is adopted. It consists in the application of the effective medium theories in order to obtain an analytical EM model of the metal foams; this way, their SE can be evaluated with a negligible computational time by using common mathematical tools. Finally, a methodology to design/analyze customized metal foams for EM shield applications is suggested. It takes advantage from the joint use of the numerical and analytical presented approaches, thus allowing a computationally efficient evaluation of SE and other electromagnetic properties of metal foams. Results demonstrate the suitability of metal foam structures for effective EM shielding in many industrial applications, as well as the accuracy of the proposed analytical and numerical approaches.
Citation
Luca Catarinucci, Giuseppina Monti, and Luciano Tarricone, "Metal Foams for Electromagnetics: Experimental, Numerical and Analytical Characterization," Progress In Electromagnetics Research B, Vol. 45, 1-18, 2012.
doi:10.2528/PIERB12082913
References

1. Ashby, M. F., A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, 2000.

2. Kovacik, J., P. Tobolka, F. Simancik, J. Banhart, M. F. Ashby, and N. A. Fleck, "Metal foams and foam metal structures," Int. Conf. Metfoam'99, MIT Verlag Bremen, Germany, Jun. 1999.        Google Scholar

3. Banhart, J., "Manufacture characterisation and application of cellular metals and metal foams," Progress in Materials Science, Vol. 46, No. 6, 559-632, 2001.
doi:10.1016/S0079-6425(00)00002-5        Google Scholar

4. Deshpande, V. S. and N. A. Fleck, "Isotropic constitutive models for metallic foams," Journal of the Mechanics and Physics of Solids, Vol. 48, 1253-1283, 2000.
doi:10.1016/S0022-5096(99)00082-4        Google Scholar

5. Hanssen, A. G., O. S. Hopperstad, M. Langseth, and H. Ilstad, "Validation of constitutive models applicable to aluminium foams," International Journal of Mechanical Sciences, Vol. 44, 359-406, 2002.
doi:10.1016/S0020-7403(01)00091-1        Google Scholar

6. Lu, T. J. and J. M. Ong, "Characterization of close-celled cellular aluminium alloys," Journal of Materials Science, Vol. 36, 2773-2786, 2001.
doi:10.1023/A:1017977216346        Google Scholar

7. Bart-Smith, H., J. W. Hutchinson, N. A. Fleck, and A. G. Evans, "In°uence of imperfections on the performance of metal foam core sandwich panels," Int. Journal of Solid and Structures, Vol. 39, 4999-5012, 2002.
doi:10.1016/S0020-7683(02)00250-0        Google Scholar

8. Youssef, S., E. Maire, and R. Gaertner, "Finite element modeling of the actual structure of cellular materials determined by X-ray tomography," Acta Materialia, Vol. 53, 719-730, 2005..
doi:10.1016/j.actamat.2004.10.024        Google Scholar

9. Baumeister, J., U. J. Banhart, and M. Weber, "Aluminium foams for transport industry," Materials & Design, Vol. 18, 217-220, 1997.
doi:10.1016/S0261-3069(97)00050-2        Google Scholar

10. Han, F. S. and Z. G. Zhu, "The mechanical behavior of foamed aluminum," Journal of Materials Science, Vol. 34, 291-299, 1999.        Google Scholar

11. Catarinucci, L., O. Losito, L. Tarricone, and F. Pagliara, "High added-value EM shielding by using metal-foams: Experimental and numerical characterization," IEEE Int. Symp. on Electromagnetic Compatibility, Vol. 2, 285-289, Aug. 2006.        Google Scholar

12. Lovat, G. and P. Burghignoli, "Shielding effectiveness of a metamaterial slab," IEEE Int. Symp. on Electromagnetic Compatibility, 2007.        Google Scholar

13. Boyvat, M. and C. Hafner, "Molding the flow of magnetic field with metamaterials: Magnetic field shielding," Progress In Electromagnetics Research, Vol. 126, 303-316, 2012.
doi:10.2528/PIER12022010        Google Scholar

14. Monti, G., L. Catarinucci, and L. Tarricone, "New materials for electromagnetic shielding: Metal foams with plasma properties," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1700-1705, Aug. 2010.
doi:10.1002/mop.25309        Google Scholar

15. Monti, G., L. Catarinucci, and L. Tarricone, "Metal foams for electromagnetic shielding: A plasma model," Proc. of European Conference on Antennas and Propagation, EuCAP 2009, 2123-2126, 2009.        Google Scholar

16. Monti, G., L. Catarinucci, and L. Tarricone, "Experimental validation of a plasma model for electromagnetic metal foam shields," IEEE MTT-S International Microwave Symposium Digest, 145-148, 2009.        Google Scholar

17. Catarinucci, L., P. Palazzari, and L. Tarricone, "A parallel variable-mesh FDTD tool for the solution of large electromagnetic problems," Proc. of 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005, Denver, CO, 2005.        Google Scholar

18. Catarinucci, L., P. Palazzari, and L. Tarricone, "Parallel FDTD simulation of radiobase antennae," Radiation Protection Dosimetry, Vol. 97, No. 4, 409-413, 2001.
doi:10.1093/oxfordjournals.rpd.a006699        Google Scholar

19. Catarinucci, L., P. Palazzari, and L. Tarricone, "A parallel FDTD tool for the solution of large dosimetric problems: An application to the interaction between humans and radiobase antennas," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1755-1758, 2002.        Google Scholar

20. Catarinucci, L., P. Palazzari, and L. Tarricone, "Human exposure to the near field of radiobase antennas --- A full-wave solution using parallel FDTD," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 935-940, 2003.
doi:10.1109/TMTT.2003.808695        Google Scholar

21. De Donno, , D., A. Esposito, L. Tarricone, and L. Catarinucci, "Introduction to GPU computing and CUDA programming: A case study on FDTD," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 116-122, 2010.
doi:10.1109/MAP.2010.5586593        Google Scholar

22. Catarinucci, L., P. Palazzari, and L. Tarricone, "On the use of numerical phantoms in the study of the human-antenna interaction problem," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 43-45, 2003.        Google Scholar

23. Catarinucci, L. and L. Tarricone, "A parallel graded-mesh FDTD algorithm for human-antenna interaction problems," International Journal of Occupational Safety and Ergonomics, Vol. 15, No. 1, 45-52, 2009.        Google Scholar

24. Taflove, A., Computational Electrodynamics: The Finite Difference Time-domain Method, Artech House, Norwood, MA, 1995.

25. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, Jan. 2001.
doi:10.1063/1.1343489        Google Scholar

26. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electronics Review, Vol. 14, No. 3, 179-186, 2006.
doi:10.2478/s11772-006-0023-z        Google Scholar

27. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801        Google Scholar

28. Monti, G. and L. Tarricone, "Signal reshaping in a transmission line with negative group velocity behaviour," Microwave Optical Technology Letters, Vol. 51, No. 11, 2627-2633, 2009.
doi:10.1002/mop.24688        Google Scholar

29. Monti, G. and L. Tarricone, "Dispersion analysis of a planar negative group velocity transmission line," Proceedings of the 37th European Microwave Conference, EUMC, 1644-1647, 2007.        Google Scholar

30. Monti, G. and L. Tarricon, "Compact broadband monolithic 3-dB coupler by using artificial transmission lines," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2662-2667, 2008.
doi:10.1002/mop.23735        Google Scholar

31. Monti, G. and L. Tarricone, "Reduced-size broadband CRLH-ATL rat-race coupler," Proceedings of the 36th European Microwave Conference, EuMC 2006, 125-128, 2007.        Google Scholar

32. Wang, C.-W., T.-G. Ma, and C.-F. Yang, "A new planar artificial transmission line and its applications to a miniaturized butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2792-2801, 2007.
doi:10.1109/TMTT.2007.909474        Google Scholar

33. Monti, G. and L. Tarricone, "Dual-band artificial transmission lines branch-line coupler," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 18, No. 1, 53-62, 2008.
doi:10.1002/mmce.20266        Google Scholar

34. Monti, , G., R. de Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
doi:10.2528/PIER09071109        Google Scholar

35. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstrip line branch-line and rat race coupler couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 10, 2119-2125, Oct. 2003.
doi:10.1109/TMTT.2003.817442        Google Scholar

36. Monti, G. and L. Tarricone, "A novel theoretical formulation for the analysis of the propagation of finite-bandwidth signals in a double-negative slab," Microwave and Optical Technology Letters, Vol. 47, No. 5, 434-439, 2005.
doi:10.1002/mop.21193        Google Scholar

37. Monti, G. and L. Tarricone, "Gaussian pulse expansion of modulated signals in double-negative slab," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2755-2761, 2006.
doi:10.1109/TMTT.2006.874879        Google Scholar

38. Choy, T. C., Effective Medium Theory: Principles and Applications Clarendon, Oxford University Press, New York, 1999.

39. Monti, G. and L. Tarricone, "Dispersion analysis of an negative group velocity medium with MATLAB," Applied Computational Electromagnetics Society Journal, Vol. 24, No. 5, 478-486, Oct. 2009.        Google Scholar

40. Monti, G. and L. Tarricone, "On the propagation of a Gaussian pulse in a double-negative slab," Proc. 35th European Microwave Conference, 1419-1422, 2005.        Google Scholar

41. . Ann. Phys., Vol. 1, 566, Leipzig, 1900.        Google Scholar

42. Ashcroft, N. W. and N. D. Mermin, olid State Physics, Saunders Co., Philadelphia, 1976.

43. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007        Google Scholar

44. Silveirinha, M. G. and C. A. Fernandes, "Homogenization of 3-D-connected and nonconnected wire metamaterials," IEEE Trans. on Microw. Theory and Techniques, Vol. 53, No. 4, Apr. 2005.        Google Scholar

45. Maslovski, S. I., S. A. Tretyakov, and P. A. Belov, "Wire media with negative effective permittivity: A quasi static model," Microwave Optical Technology Letters, Vol. 35, No. 1, 47-51, Oct. 2002.
doi:10.1002/mop.10512        Google Scholar

46. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Norwood, MA, 2003.

47. Lee, J.-Y., J.-H. Lee, H.-S. Kim, N.-W. Kang, and H.-K. Jung, "Effective medium approach of left-handed material using a dispersive FDTD method," IEEE Trans. on Magnetic, Vol. 41, No. 5, 1484-1487, May 2005.
doi:10.1109/TMAG.2005.844566        Google Scholar

48. Moses, C. A. and N. Engheta, "Electromagnetic wave propagation in the wire medium: A complex medium with long thin inclusions," Wave Motion, Vol. 34, No. 3, 239-352, 2001.
doi:10.1016/S0165-2125(01)00095-6        Google Scholar

49. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007        Google Scholar

50. Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, 1992.

51. "IEEE Standard method for measuring the effectiveness of electromagnetic shielding enclosures,", IEEE Std 299-2006, Feb. 2007.        Google Scholar

52. Catarinucci, L., G. Monti, and L. Tarricone, "A parallel-grid-enabled variable-mesh FDTD approach for the analysis of slabs of double-negative metamaterials," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Vol. 3A, 782-785, Washington, Jul. 2005.        Google Scholar