1. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304 Google Scholar
2. Coudos, S. K., Z. D. Zaharis, and T. V. Yioultsis, "Application of a differential evolution algorithm with strategy adaptation to the design of multi-band microwave filters for wireless communications," Progress In Electromagnetics Research, Vol. 109, 123-137, 2010.
doi:10.2528/PIER10081704 Google Scholar
3. Wu, L.-S., J.-F. Mao, W. Shen, and W.-Y. Yin, "Extended doublet bandpass filters implemented with microstrip resonator and full-/half-mode substrate integrated cavities," Progress In Electromagnetics Research, Vol. 108, 433-447, 2010.
doi:10.2528/PIER10081206 Google Scholar
4. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608 Google Scholar
5. Hong, J.-S., E. P. McErlean, and B. M. Karyamapudi, "A high-temperature superconducting filter for future mobile telecommunication systems," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 6, 1976-1981, 2005.
doi:10.1109/TMTT.2005.848840 Google Scholar
6. Lu, J.-C., C.-K. Liao, and C.-Y. Chang, "Microstrip parallel-coupled filters with cascade trisection and quadruplet responses," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 9, 2101-2110, 2008.
doi:10.1109/TMTT.2008.2002226 Google Scholar
7. Cai, L. Y., G. Zeng, H. C. Yang, and Y. Z. Cai, "Compact bandpass filter for RFID reader applications," Electronics Lett., Vol. 47, No. 7, 321-322, 2011.
doi:10.1049/el.2011.0275 Google Scholar
8. Liao, C. K. and C. Y. Chang, "Modified parallel-coupled filter with two independently controllable upper stopband transmission zeros," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 12, 841-843, 2005.
doi:10.1109/LMWC.2005.860017 Google Scholar
9. Amari, S. and J. Bornemann, "Maximum number of finite transmission zeros of coupling resonator filters with source/load multi-resonator coupling and a given topology," Microwave Conference, 1175-1177, 2000. Google Scholar
10. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011. Google Scholar
11. Wei, C.-L., B.-F. Jia, Z.-J. Zhu, and M.-C. Tang, "Hexagonal dual-mode filter with four transmission zeros," Electronics Lett., Vol. 47, No. 3, 195-196, 2011.
doi:10.1049/el.2010.3291 Google Scholar
12. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401 Google Scholar
13. Wu, Y.-L., C. Liao, and X.-Z. Xiong, "A dual-wideband bandpass filter based on E-shaped microstrip SIR with improved upper-stopband performance," Progress In Electromagnetics Research, Vol. 108, 141-153, 2010.
doi:10.2528/PIER10071802 Google Scholar
14. Montejo-Garai, , J. R., "Synthesis of N-even order symmetric filters with N transmission zeros by means of source-load cross coupling," Electronics Lett., Vol. 36, No. 3, 232-233, 2000.
doi:10.1049/el:20000242 Google Scholar
15. Athukorala, L. and D. Budimir, "Compact filter configurations using concentric microstrip open-loop resonators," IEEE Microw. Wirelss Compon. Lett., Vol. 22, No. 5, 245-247, 2012.
doi:10.1109/LMWC.2012.2190268 Google Scholar
16. Shaman, H. and J.-S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microw. Wirelss Compon. Lett., Vol. 17, No. 2, 121-123, 2007.
doi:10.1109/LMWC.2006.890335 Google Scholar
17. Yang, R.-Y., K. Hon, C.-Y. Hung, and C.-S. Ye, "Design of dualband bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504 Google Scholar
18. Ma, K.-X., J.-G. Ma, K.-S. Yeo, and M.-A. Do, "A compact size coupling controllable filter with separate electric and magnetic coupling paths," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 3, 1113-1119, 2006.
doi:10.1109/TMTT.2005.864118 Google Scholar
19. Chu, Q.-X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 2, 431-439, 2008.
doi:10.1109/TMTT.2007.914642 Google Scholar
20. Velazquez-Ahumada, M. D. C., J. Martel-Villagr, F. Medina, and F. Mesa, "Design of a band-pass filter using stepped impedance resonators with floating conductors," Progress In Electromagnetics Research, Vol. 105, 31-48, 2010.
doi:10.2528/PIER10042010 Google Scholar
21. Ouyang, X. and Q.-X. Chu, "A mixed cross-coupling microstrip filter with multiple transmission zeros," Journal of Electromagnetic Waves and Applications,, Vol. 25, No. 11-12, 1515-1524, 2011.
doi:10.1163/156939311797164936 Google Scholar
22. Cameron, R.-J., A.-R. Harish, and C.-J. Radcliffe, "Synthesis of advanced microwave filters without diagonal cross-couplings," IEEE Trans. on Microw. Theory and Tech., Vol. 12, 2862-2872, 2002.
doi:10.1109/TMTT.2002.805141 Google Scholar
23. Wei, X. B., Y. Shi, P. Wang, J. X. Liao, Z. Q. Xu, and B. C. Yang, "Design of compact, wide stopband bandpass filter using stepped impedance resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1095-1104, 2012.
doi:10.1080/09205071.2012.710534 Google Scholar