Vol. 34
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-11-21
Behavioral Modeling of RF Power Amplifiers with Memory Effects Using Orthonormal Hermite Polynomial Basis Neural Network
By
Progress In Electromagnetics Research C, Vol. 34, 239-251, 2013
Abstract
Behavioral modeling technique provides an efficient and convenient way to analyze and predict the performance of the RF power amplifiers (PAs) in system-level, and thus helps to constructe a suitable predistorter to linearize the PA system. To accurately describe the nonlinear dynamic characteristics of PAs, an orthonormal Hermite polynomial basis neural network (OHPBNN) is utilized to represent the PAs behavioral model, which outperforms, mainly in respect of modeling accuracy, the classic feedforward neural network using sigmoid activation functions. In addition, we apply an adaptive algorithm to determine the appropriate memory depth of PA behavioral model. Simulation results show that the proposed model provides more accurate prediction of the PAs output signal compared with classic neural network models.
Citation
Xiao-Hui Yuan, and Quanyuan Feng, "Behavioral Modeling of RF Power Amplifiers with Memory Effects Using Orthonormal Hermite Polynomial Basis Neural Network," Progress In Electromagnetics Research C, Vol. 34, 239-251, 2013.
doi:10.2528/PIERC12091903
References

1. Ghannouchi, F. M. and O. Hammi, "Behavioral modeling and predistortion," IEEE Microwave Mag., Vol. 10, No. 7, 52-64, Dec. 2009.
doi:10.1109/MMM.2009.934516

2. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electron. Lett., Vol. 37, No. 23, 1417-1418, Nov. 2001.
doi:10.1049/el:20010940

3. Thein, T. T., C. L. Law, and K. Fu, "Frequency domain dynamic thermal analysis in GaAs HBT for power amplifier applications," Progress In Electromagnetics Research, Vol. 118, 71-78, 2011.
doi:10.2528/PIER11050301

4. Zhang, B., Y.-Z. Xiong, L. Wang, S. Hu, T.-G. Lim, Y.-Q. Zhuang, and J. L.-W. Li, "A D-band power amplifier with 30-GHz bandwidth and 4.5-dBm Psat for high-speed communicatio system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.
doi:10.2528/PIER10060806

5. Zhu, A. and T. J. Brazil, "Behavioral modeling of RF power amplifiers based on pruned volterra series," IEEE Microwave and Wireless Components Lett., Vol. 14, 563-565, Dec. 2004.
doi:10.1109/LMWC.2004.837380

6. Saleh, A., "Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers," IEEE Trans. Commun., Vol. 29, No. 11, 1715-1720, Nov. 1981.
doi:10.1109/TCOM.1981.1094911

7. D'Andrea, A. N., V. Lottici, and R. Reggiannini, "RF power amplifier linearization through amplitude and phase predistortion," IEEE Trans. Commun., Vol. 44, No. 11, 1477-1484, Nov. 1996.
doi:10.1109/26.544464

8. Cavers, J. K., "A linearizing predistorter with fast adaptation," Proc. IEEE Vehicular Techn. Conf., 41-47, May 1990.
doi:10.1109/VETEC.1990.110293

9. Schetzen, M., The Volterra and Wiener Thoeries Nonlinear Systems, Wiley, New York, 1980.

10. Zhu, A., M. Wren, and T. J. Brazil, "An efficient Volterra-based behavioral model for wideband RF power amplifiers," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, 787-790, Jun. 2003.

11. Zhu, A. and T. J. Brazil, "Behavioral modeling of RF power amplifiers based on pruned Volterra series," IEEE Microwave and Wireless Components Lett., Vol. 14, No. 12, Dec. 2004.
doi:10.1109/LMWC.2004.837380

12. Morgan, D. R., Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Trans. Signal Process., Vol. 54, No. 10, 3852-3860, Oct. 2006.
doi:10.1109/TSP.2006.879264

13. Wang, H., J. Bao, and Z. Wu, "Comparison of the behavioral modelings for RF power amplifier with memory effects," IEEE Microwave and Wireless Components Lett., Vol. 19, No. 3, 179-181, Mar. 2009.
doi:10.1109/LMWC.2009.2013746

14. Ding, L. and G. T. Zhou, "Effects of even-order nonlinear terms on power amplifiers modeling and predistortion linearization," IEEE Trans. Vehicular Tech., Vol. 53, 156-162, Jan. 2004.
doi:10.1109/TVT.2003.822001

15. Liu, T., S. Boumaiza, and F. M. Ghannouchi, "Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 4, Apr. 2006.

16. Sano, A. and L. Sun, "Identification of Harmmerstein-Wiener system with application to compensation for nonlinear distortion," Proc. 41st SICE Annu. Conf., Vol. 3, 1521-1526, Aug. 2002.
doi:10.1109/SICE.2002.1196533

17. Ibnkahla, M., J. Sombrin, F. Castanie, and N. J. Bershad, "Neural networks for modeling nonlinear memoryless communication channels," IEEE Trans. Commun., Vol. 45, 768-771, Jul. 1997.

18. Liu, T., S. Boumaiza, and F. M. Ghannouchi, "Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, Mar. 2004.
doi:10.1109/TMTT.2004.823583

19. Mkadem, F. and S. Boumaiza, "Extended Hammerstein behavioral model using artificial neural networks," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 4, Apr. 2009.
doi:10.1109/TMTT.2009.2015092

20. Cao, Y., X. Chen, and G. Wang, "Dynamic behavioral modeling of nonlinear microwave devices using real-time recurrent neural network," IEEE Trans. Electron Devices, Vol. 56, No. 5, May 2009.
doi:10.1109/TED.2009.2016029

21. Li, M., J. Liu, Y. Jiang, and W. Feng, "Complex-Chebyshev functional link neural network behavioral model for broadband wireless power amplifiers," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 6, Jun. 2012.

22. Naskas, N. and Y. Papananos, "Adaptive baseband predistorter for radio frequency power amplifiers based on a multiplayer perceptron," 9th Int. Electron., Circuits, Syst. Conf., Vol. 3, No. 11, 1107-1110, 2002.
doi:10.1109/ICECS.2002.1046445

23. Lin, F. J., et al., "Tracking control of thrust active magnetic bearing system via hermite polynomial-based recurrent neural network," IET Electric Power Applications, Vol. 4, 701-714, 2010.
doi:10.1049/iet-epa.2010.0068

24. Vrudhula, S., et al., "Hermite polynomial based interconnect analysis in the presence of process variations ," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, 2001-2011, 2006.
doi:10.1109/TCAD.2005.862734